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It is known that for some values of the initial parameters that define the Richtmyer-Meshkov instability, the
normal velocity at the contact surface vanishes asymptotically in time. This phenomenon, called freeze-out, is
studied here with an exact analytic model. The instability freeze-out, already considered by previous authors
[K. O. Mikaelian, Phys. Fluids6, 356 (1994), Y. Yang, Q. Zhang, and D. H. Sharp, Phys. Fluids6, 1856
(1994), and A. L. Velikovich, Phys. Fluids8, 1666 (1996)], is the result of a subtle interaction between the
unstable surface and the corrugated shock fronts. In particular, it is seen that the transmitted shock at the
contact surface plays a key role in determining the asymptotic behavior of the normal velocity at the contact
surface. By properly tuning the fluids compressibilities, the density jump, and the incident shock Mach number,
the value of the initial circulation deposited by the reflected and transmitted shocks at the material interface can
be adjusted in such a way that the normal growth at the contact surface will vanish for large times. The
conditions for this to happen are calculated exactly, by expressing the initial density ratio as a function of the
other parameters of the problem: fluids compressibilities and incident shock Mach number. This is done by
means of a linear theory model developed in a previous work[J. G. Wouchuk, Phys. Rev. E.63, 056303
(2001)]. A general and qualitative criterion to decide the conditions for freezing-out is derived, and the
evolution of different cases(freeze-out and non-freeze-out) are studied with some detail. A comparison with
previous works is also presented.
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I. INTRODUCTION

The Richtmyer-Meshkov(RM) instability develops when-
ever an incident planar shock collides with a contact surface
separating two different fluids. Any small corrugation ini-
tially present at the material interface starts to grow and the
fluids at both sides also develop perturbations in pressure,
density, and velocity[1–8]. In this work we will only con-
sider situations in which another shock is reflected at the
contact surface[3,4]. In Fig. 1 we show the perturbed contact
surface that separates two fluids. The reflected and transmit-
ted shocks are also shown. We will consider ideal gases and
shocks of arbitrary intensity. The incident shock comes from
the right (fluid b) with the velocity ui x̂ in the laboratory
reference frame. The fluid velocity behind the incident shock
is −v1 x̂. The incident shock compresses fluid “b” from its
initial density rb0 to the valuerb1. It hits the interface att
=0. After the shock-interface collision, a reflected and tras-
mitted shock are formed. The reflected shock moves to the
right with velocity ur x̂ in the laboratory frame. The density
of the fluid compressed by the reflected shock isrbf. The
transmitted front moves to the left with velocity −ut x̂. It
compresses fluid “a” from ra0 to the final valuerbf. In be-
tween, the contact surface moves to the left with velocity
−vi x̂. The interface is assumed to have a sinusoidal corruga-
tion with wavelengthl. The contact surface ripple before
shock compression is assumed to be of the formci0syd
=c0 cosky, wherek=2p /l is the perturbation wave number.
Once the transmitted and reflected fronts start to move ahead
of the interface, they generate sound, entropy, and vorticity
perturbations. We will assume very small perturbation values
for the different quantities, and use a linear theory descrip-

tion. The entropy and vorticity perturbations are frozen to the
fluids elements, and therefore, they are stationary in a system
of reference co-moving with the shocked material interface.
The vorticity perturbations consist only of velocity fluctua-
tions and the entropy perturbations consist only of density
and temperature fluctuations[10]. On the contrary, the sound
pressure and density fluctuations, travel with the speed of
sound of each material and bounce between both fronts, gen-
erating at the same time an irrotational component for the

FIG. 1. Perturbed interface separating two different fluids after
the interaction with an incident shock. The corrugated transmitted
and reflected wave fronts are shown. For explanation of the sym-
bols, see the text.
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velocity field [10]. Initially, at t=0+, the shocks generate
tangential velocity profiles along the contact surface. On the
side of fluid “a” the initial tangential velocity profile is
dvya

0 sinky and on the side of fluid “b” it is dvyb
0 sinky. That

is, there is an initial circulation distributed along the material
interface. We definedG0=dvyb

0 −dvya
0 , which is indicated in

Fig. 2(a) with the arrows corresponding to the tangential ve-
locities. Due to the sound waves that arrive to the contact
surface from both sides, this circulation will change in time,
because of baroclinic effects, and arrive to an asymptotic
value which we calldG` [6–9]. Meanwhile, the normal ve-
locity is also changing in time, adjusting itself to the instan-
taneous value of the circulation at the interface. The interac-
tion between the shock fronts and the interface via the sound
waves that reverberate in the space in between is responsible
for the temporal evolution of the perturbations in the whole
flow field. Asymptotically in time, the shock fronts will re-
gain their planar shape, the sound waves fluctuations would
have almost vanished, and there will be stationary velocity,
vorticity and entropy perturbation patterns at both sides of
the contact interface. The asymptotic rate of growth of the
ripple at the interface is determined by an adequate average
of the vorticity field at each side of the material surface
[7–10]. We have four dimensionless parameters that are nec-
essary to describe the instability evolution. They are: the
initial density jumpR0=ra0/rb0, the fluids compressibilities
(which for ideal gases can be described by the isentropic

exponentsga andgb), and the incident shock Mach number
sMid, which determines the degree of compression suffered
by both fluids. By adequately changing these four parameters
we could, in principle, pass continuously from a situation in
which a shock is reflected to another one in which a rarefac-
tion is reflected, as a result of the “incident shock-interface”
interaction. In this work we will only study the shock re-
flected situations. Typically, this amounts to considering situ-
ations in whichR0.1 for equalg at both sides. For different
values of the fluid isentropic exponents, the conditions that
must be satisfied in order to have a reflected shock or rar-
efaction will be a definite function ofR0, Mi andga, gb [3,4].
As is already known, whenever a shock is reflected, the
asymptotic rate of growth is usually a positive quantity. This
means that the interface ripple will grow without inverting its
phase[1–10]. However, as has been seen in relatively recent
works [3,4,9], we could also have an interface phase inver-
sion, and still having a shock reflected, whenR0,1. This
situation has been called “indirect phase inversion” in Ref.
[3]. This means that in between, we could be able to observe
a zero asymptotic rate of growth at the interface[4]. This
possibility, which has been calledfreeze-outof the perturba-
tion [11], has been predicted by Fraley in Ref.[10], and
studied in some detail later by Mikaelian[11], and addressed
later on by Yang, Zhang, and Sharp[3], and by Velikovich
[4,11]. The possibility of observing this type of perturbation
evolution was also confirmed numerically by Yanget al. [3],

FIG. 2. (a) Normal case of the
RMI, for which a positive circula-
tion has been generated initially
by the corrugated fronts at the
contact surface. For details, see
the text.(b) Tangential velocity on
the side of fluid “a” for the param-
eters shown, as a function of di-
mensionless time. For details, see
the text. (c) Same as(b), for the
tangential velocity on side “b.” (d)
Same as(b), for the normal veloc-
ity at the contact surface.
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and also with independent analytic calculations[7,9]. Fraley
concluded that the situations in which freeze-out could occur
should haveR0,1.5. This prediction was confirmed later on
by Mikaelian, who derived an approximate expression for
the growth rate, valid up to second order inMi

2−1 (therefore,
his conclusions are approximately valid for relatively weak
shocks) and derived an approximate formula that locates
points of freeze-out, under the assumption that the initial
density ratio at the interface equals unitysR0=1d [11]. Mi-
kaelian also stressed the necessity of having different values
for the isentropic exponents at both sides of the interface, a
result that is confirmed by our calculations. However, con-
trary to the initial belief, there is no need to choose very
different or exotic gamma values in order to find freeze-out.
The only practical restriction that we have found is that the
fluids should have approximately similar pre-shock mass
densities. As discussed by Velikovich[4], freeze-out of the
normal velocity perturbation is not a most rare occurrence. If
we start with a given set ofga, gb, Mi, and R0.1 values,
such that a shock is reflected, and start decreasing the initial
density ratio, we will continuously pass from the shock re-
flected case to the rarefaction reflected situation. Together
with this change, the phase of the interface ripple will also
get inverted at some intermediate density jumpR0, and the
asymptotic growth rate could then be negative forR0,1
[2–4]. Thus, at some specific value of the pre-shock density
jump, the asymptotic growth rate equals zero[4]. It turns out
to be the case that, if we start with shock reflected situations
and decrease the initial parameterR0, freeze-out conditions
will cluster aroundR0,1. To get a simple, qualitative, yet
rigorous picture of the physics of freeze-out, it is better to
briefly discuss two opposite cases of non-freeze-out. One in
which the growth is positive and another one in which the
asymptotic growth at the interface shows indirect phase in-
version. After that, we analyze in a qualitative way a freeze-
out situation in an effort to grasp the underlying physics.

A. Non-freeze-out cases

At first, let us consider an incident shock(Mach number
Mi =5) that travels inside a fluid with isentropic exponent
gb=1.1. The heavier fluid hasga=1.8 and the initial density
ratio at the contact surface isR0=3. The transmitted and
reflected shock fronts start to move away from the interface
at t=0+. In Fig. 2(a) we show the deformed interface, the
corrugated shock fronts, and the tangential velocities around
t=0+. The tangential velocities have the valuesdvya

0

<−0.006 844uikc0 and dvyb
0 <0.1168uikc0. With a linear

theory model like that of Ref.[6] (previous minor errors in
that reference have been corrected), the temporal evolution
of the magnitudes at the interface can be studied. In Figs.
2(b) and 2(c) we show the temporal evolution of the tangen-
tial velocities at both sides of the interface. The horizontal
axis is given as the distance traveled by the transmitted
shock in units of the contact surface perturbation wave-
length. We see that both tangential velocity perturbations ar-
rive to a constant asymptotic value. These asymptotic values
are indicated with dashed lines, and are calculated with the
method described in Ref.[9]. The asymptotic values are:

dvya
` <−0.071 17uikc0 and dvyb

` <0.089 98uikc0. The final
interface circulationsdG`<0.01863uikc0d has the same sign
as the initial circulationsdG0<0.1236uikc0d, for the param-
eters chosen in this case. We show next the temporal evolu-
tion of the normal velocity at the interface ripple in Fig. 2(d).
It is seen that after some oscillations(the characteristic pe-
riod is determined by the sound waves that reverberate at
both sides of the contact surface[5,10]), the ripple attains a
constant rate of growth, after the shock has moved some
wavelengths away. The dashed line is the asymptotic normal
velocity, also calculated with the algorithm developed in Ref.
[9]. Its value is:dvi

`<0.076 19uikc0. As the shock consid-
ered here is quite strong, and one of the fluids is very com-
pressible, there is some finite time before the linear
asymptotic regime is achieved. Of course, for finite values of
the interface ripple amplitude, the rate of growth will be later
modified because of nonlinear effects, and the growth will be
reduced[8,12]. Therefore, for a practical situation in which
c0 is not a negligible fraction ofl, the behavior shown in
Fig. 2 will be of limited validity in time. Anyway, we restrict
our discussion to situations in whichc0!l and non-linear
effects can be safely ignored.

We show in Fig. 3(a), the initial configuration of tangen-
tial velocities and shock and interface ripples, for a case in
which ga=1.8,gb=1.1,Mi =5, as before, butR0=1. We have
reduced the density jump in order to find an indirect rate of
growth at the interface ripple. As can be seen from Fig. 3(a),
the quantitydvya

0 <0.2294uikc0 has now the same sign as
dvyb

0 <0.019 67uikc0. Furthermore, we see that it isdvya
0

@dvyb
0 .0, for this case. It is also seen that the transmitted

front has inverted its phase in this situation, as compared to
the case discussed above. The initial circulationsdG0

<−0.2098uikc0d has changed sign with respect to the case
discussed before. In Figs. 3(b) and 3(c) we show the tempo-
ral evolution of the tangential velocities at the interface. The
asymptotic values of the contact surface tangential velocities
are:dvya

` <0.096 72uikc0 anddvyb
` <−0.011 15uikc0, which

give dG`<−0.1079uikc0. The normal perturbation velocity
at the interface is shown in Fig. 3(d). The asymptotic value is
dvi

`<−0.011 36uikc0. It is clear that the phase of the con-
tact surface corrugation has changed sign early during per-
turbation growth and therefore, the final asymptotic growth
proceeds in the opposite direction as compared to the previ-
ous case. Where is the reason for this anomalous behavior? It
is impossible to give in simple mathematical terms a simple
algebraic condition to be fulfilled, in such a way that the
anomalous phase inversion could be easily predicted. This is
so, because it is the result of a subtle interaction between the
interface perturbations and the sound pressure fluctuations
coming from the shocks at each side of the contact surface.
The interaction between interface and shock perturbations is
of non-local nature in time, a fact which unfortunately com-
plicates the mathematical description in simpler terms. Even
more so, if the sound speeds at both sides are different, be-
cause the fluid with lesser sound speed will arrive much later
to the asymptotic stage and hence, we have a mismatch of
signals at the contact surface[10]. These effects are a con-
sequence of the fluids compressibilities, as already recog-
nized by previous authors[4,5,10,11]. We can get, however,
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a qualitative understanding of the indirect phase inversion,
by looking at the initial tangential velocities. In fact, the
initial ripples of the reflected and transmitted shock fronts
are given by[1,3–5,10]

cr0 = S1 +
ur

ui
Dc0, s1d

ct0 = S1 −
ut

ui
Dc0, s2d

from which the initial tangential velocities behind the corru-
gated fronts can be calculated[1,3,4]:

dvyb
0 = sv1 − vidcr0, s3d

dvya
0 = − vict0. s4d

In a case like the one studied in Fig. 2, the fluids and shock
parameters are such thatut,ui. In fact, we get ut /ui

<0.9901,1. This means that the initial circulation is posi-
tive sdG0.0d. The subsequent interaction with the sound
waves does not modify the sign of this circulation and there-
fore, the interface ripple does not change phase.

Let us now consider the case studied in Fig. 3. For the
parameters of this situation, we getut /ui <1.2648.1. This
means that the transmitted shock front ripple has an inverted
phase with respect to the initial interface corrugation(at t
=0+). Then, the initial tangential velocity induced by the
transmitted front has the same sign as the tangential velocity
behind the reflected shock. Furthermore, the absolute values
are such that the tangential velocity on side “a” is “stronger”
than that on side “b”. That is, the initial circulation is now
negativesdG0,0d. The following interaction of this circula-
tion with the pressure gradient induced by the incoming
sound waves(for t.0) will make the final circulation remain
negative, in such a way that a negative normal growth is
observed at the interface ripple. The natural question is then,
how much faster should the transmitted shock move com-

FIG. 3. (a) Same as 2(a), but for a case in which the initial circulation is negative. For details, see the text.(b) Tangential velocity on the
side of fluid “a” for the parameters shown, as a function of dimensionless time. For details, see the text.(c) Same as(b), for the tangential
velocity on side “b.” (d) Same as(b), for the normal velocity at the contact surface.

J. G. WOUCHUK AND K. NISHIHARA PHYSICAL REVIEW E70, 026305(2004)

026305-4



pared to the incident shock, in order to stop the growth at the
interface, asymptotically in time. Two points are noted: first,
the requirementut=ui will not give freeze-out, because
dG0.0 and the interaction with the sound waves does not
seem to be strong enough to reduce the growth to zero in this
case. Second, the cases in whichdvya

0 =dvyb
0 would also not

conduct us to a freeze-out case, because, even ifdG0=0, its
value will not remain zero because of the baroclinic interac-
tion with the pressure field of the sound waves. The exact
amount by whichut should exceedui in order to have freeze-
out is determined by the interaction between the perturba-
tions at the contact surface and those which are generated at
the corrugated shock fronts[5,10]. In other words, there
should be a definite value for the ratioK0=dvya

0 /dvyb
0 , such

that if the parameterK0 equals some critical valueK0
fo, then

freeze-out results. For values ofK0 different fromK0
fo, posi-

tive or negative growth would be the outcome. A quantitative
determination ofK0

fo, in order to decide whether freeze-out
will occur or not, is far from being simply written in terms of
the initial parameters that describe the zero order flow.

B. Freeze-out situation

We discuss now a situation which is almost near freeze-
out conditions. Strictly speaking, to start the discussion in
more precise terms, the freeze-out conditions should be
sought by requiring the vanishing of the asymptotic normal
velocity perturbation at the interface. To be successful, we
must use an exact expression for the asymptotic rate of
growth. To this scope, it is very convenient to use the exact
formula derived in Refs.[7,9]:

dvi
` =

dvyb
0 − Rdvya

0

R+ 1
+

RFa − Fb

R+ 1
= 0, s5d

wheredvi
` is the asymptotic normal velocity at the interface

ripple, R=raf /rbf is the final density ratio at the contact sur-
face, andFa,b represent the interaction of the corrugated in-
terface with the sound waves emitted by the deformed shock
fronts. It is also seen that the quantitiesFa,b can be thought
of as representing a weighted spatial average of the vorticity
perturbation field left by the corrugated fronts in the bulk of
the fluids[7,9]. In this sense, we also speak of them as rep-
resenting the asymptotic effect of the bulk vorticities on the
interface asymptotic evolution. For a completely irrotational
problem (which never occurs with corrugated shocks), the
quantitiesFa,b would be exactly equal to zero. This situation
is never realized in practice, for shock reflected cases. It can
be used as an approximation for very weak shocks. Indeed,
as has already been shown in Refs.[7,9], the bulk vorticity
factors Fa,b are proportional tosMi

2−1d3 for very weak
shocks. This result would induce us to think that for very
weak shocks, freezing-out conditions could be derived by
requiring the vanishing of just the irrotational contribution of
Eq. (5). As will be seen later, this is not strictly correct and
could be misleading, even for weak shocks. This means that
to correctly understand the peculiar phenomenon of
asymptotic freeze-out, we must include the terms that result
from the shocks-interface interaction. In the following sec-
tions, we will develop the algorithm that allows us to find the

solution to Eq.(5). To make a qualitative introduction here,
we have chosen the same values ofMi, ga, andgb as before,
and leaveR0 undetermined. When Eq.(5) is solved with the
method explained later, we getR0<1.157 9271. . . . Forthis
precision in the density jump, the perturbation normal veloc-
ity at the interface satisfiesdvi

`,10−10 in units of uikc0.
Obviously, if we continued calculating more digits forR0, we
would have obtained lower and lower bounds for the pertur-
bation velocity, approaching the zero value for the correct
combination of infinite digits inR0. For the purpose of the
discussion here, it is enough to setdvi

` less than a low
enough value. In Fig. 4(a) we show the initial tangential
velocities at the interface and the corrugated shocks, where
the phase inversion of the transmitted front has been evi-
denced. In Figs. 4(b) and 4(c), we show the tangential ve-
locities evolution as a function of the distance traveled by the
transmitted shock. In Fig. 4(d) we show the evolution of the
normal velocity perturbation at the interface ripple. For the
case discussed here, the initial tangential velocities on both
sides of the interface are given bydvya

0 <0.1906uikc0 and
dvyb

0 <0.0303. Later on, they are modified because of the
baroclinic interaction with the sound pressure field, and we
get the asymptotic tangential velocitiesdvya

` <0.0722uikc0
and dvyb

` <0.000 643 7uikc0. This makes a negative
asymptotic circulation:dG`<−0.0716uikc0Þ0, but zero
asymptotic normal velocity. There is no contradiction in this
result, as there is a vorticity field at both sides of the inter-
face, which is responsible for generating finite tangential ve-
locities at the contact surface. This means that, despite the
fact the interface ripple does not grow normally, the bulk of
the fluids show persistent and steady asymptotic velocity per-
turbations, which are rotational in nature, as they are that
part of the velocity field which was generated by the corru-
gated shock fronts. For example, in the general case, the
normal velocity fluctuations behind the shock front can al-
ways be decomposed in the form[10]:

dvxsx,y,td = dvx
spotdsx,y,td + dvx

srotdsx,yd, s6d

wheredvx
spotd is the irrotational contribution to the velocity

field due to the pressure generated by the reverberating
sound waves. This part of the velocity field does change in
time, but gives no contribution to vorticity, as it is an irrota-
tional mode[4,10]. On the other hand, the second part, given
by dvx

srotd, is a steady state contribution(in a system of ref-
erence co-moving with the shocked contact surface), which
does not change in time. Furthermore, it is alwaysdvx

srotdsx
=0d=0. That is, the rotational part of the velocity field al-
ways vanishes at the contact surface ripple, independently of
the properties of the fluids or the shock intensity, because the
initial st=0+d pressure fluctuations between the corrugated
shock fronts are zero[1,3,7,9,10]. Therefore, the asymptotic
velocity at the interface is the result of makingt→` andx
=0 in the above equation. The freeze-out situations would
correspond to cases in whichdvx

spotdsx=0,y,t→`d=0, which
also implies thatdvx

spotdsxÞ0,y,t→`d=0, because this a po-
tential contribution(it is always irrotational and becomes a
divergence free field, asymptotically in time, because the
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density perturbations do not change in time, at large times).
However, as the vorticity is a conserved quantity for inviscid
fluids, it is clear that even in freeze-out conditions, the sec-
ond [rotational contributiondvx

srotd, in Eq. (6)], will remain
different from zero forxÞ0, and equal to the value gener-
ated by the corresponding fronts. This means that the fluids
would keep “revolving” at each side of the interface. In this
form, the fluids keep memory of the fact that the shock fronts
were corrugated when they separated from each other, and
that they compressed non-uniformly the different fluid ele-
ments, generating steady entropy and vorticity fluctuations
along their way. In consequence, we could never speak of a
proper “stabilization” of the perturbation field, because some
energy will still remain in the fluids as rotational motion. The
effect of these perturbations would not be manifested as mo-
tion in the normal direction, but rather in the form of vortices
that persist indefinitely in time. It is only the normal velocity
at the interface that vanishes(asymptotically in time). On the
contrary, this does not happen to the normal and tangential
velocities in the bulk of the fluids. Of course, the absolute

values of those magnitudes inside the fluids would be surely
smaller in a freeze-out case as compared to a non-freeze-out
case, but this would require a specific evaluation case by
case. This persistency of the perturbations inside the fluids
could also have deleterious effects, for example in inertial
confinement fusion(ICF), if another shock is launched after
the first one(assuming that the first shock has frozen out the
perturbation growth at the interface). It is clear that a deeper
understanding of freeze-out in the RM instability would be
helpful not only because of its potential application in fields
like ICF, but also because it will help to gain a better under-
standing of the role of compressibility in general instability
evolution. To properly discuss these issues, we have orga-
nized this work as follows: in Sec. II, the basic equations for
the zero order flow and the perturbed quantities are pre-
sented. In Sec. III the method to determine the freeze-out
conditions is explained. The results of these calculations are
also shown in Sec. III. A discussion is presented in Sec. IV
and the results obtained here are compared with those found
in previous works. A brief summary is presented in Sec. V.

FIG. 4. (a) Same as 3(a), but for a case which shows asymptotic freeze-out.(b) Tangential velocity on the side of fluid “a” for the
parameters shown, as a function of dimensionless time. For details, see the text.(c) Same as(b), for the tangential velocity on side “b.” (d)
Same as(b), for the normal velocity at the contact surface.
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II. BASIC EQUATIONS

In this section we define the basic magnitudes of the zero
order flow and the equations satisfied by the perturbed quan-
tities. They are the necessary ingredients before the deriva-
tion of the freezing-out conditions is attempted.

A. Zero order quantities

Referring to Fig. 1, and solving for the Rankine-Hugoniot
equations at the shock fronts[13–15], it is easy to derive the
different magnitudes of interest in the compressed fluids. We
previously define the shock intensities, following Whitham
[15]. In fact, let p0 be the initial pressure of both fluids,
before shock compression. If the pressure driving the inci-
dent shock isp1, we define the incident shock intensity as
zi =sp1−p0d /p0. It is easy to see that the incident shock Mach
number is related to the shock intensity by:zi =2gbsMi

2

−1d / sgb+1d. The incident shock speed in the laboratory
frame is therefore:

ui = cb0Î1 +Sgb + 1

2gb
Dzi . s7d

Besides, it is not difficult to deduce the different quantities
behind the front(a subscript “1” indicates the magnitudes
behind the incident shock):

rb1

rb0
=

1 + eb1zi

1 + eb2zi
, s8d

cb1

cb0
=Îs1 + zid

rb0

rb1
, s9d

whereeb1,2=sgb±1d /2gb. The same magnitudes can be cal-
culated for the flow behind the reflected and transmitted
shocks. It is necessary, then, to define the reflected and trans-
mitted shock intensities. Letpf be the pressure between the
reflected and transmitted fronts. The reflected shock intensity
is: zr =spf −p1d /p1, and the transmitted shock intensity is cal-
culated with:zt=spf −p0d /p0. It is not difficult to see, because
of continuity of normal velocity and pressure at the contact
surface, thatzr and zt can be calculated once we specifyzi,
ga, gb, and the initial density jumpR0=ra0/rb0. The two
necessary equations are

zi

Î1 + eb1zi

− zrÎ s1 + zid
s1 + eb1zrd

rb0

rb1
=Î gb

gaR0

zt

Î1 + ea1

,

s10d

zt = zi + s1 + zidzr , s11d

where ea1,2=sga±1d /2ga. The flow velocity behind the re-
flected shock, in a system fixed to the reflected front is given
by

v1 − vi = cb1
zr

gb
Î1 + eb1zr

, s12d

and the compression ratio is

rbf

rb1
=

1 + eb1zr

1 + eb2zr
. s13d

The sound speed behind the reflected shock can be calculated
with

cbf

cb1
=Îs1 + zrd

rb1

rbf
. s14d

The reflected shock speed in the laboratory reference frame
is

ur = cb1
Î1 + eb1zr . s15d

Analogously, the density compression across the transmitted
front is

raf

ra0
=

1 + ea1zt

1 + ea2zt
. s16d

The compressed sound speed is

caf

ca0
=Îs1 + ztd

ra0

raf
, s17d

and the transmitted shock speed in the laboratory frame is

ut = ca0
Î1 + ea1zt. s18d

The contact surface velocity is

vi = ca0
zt

ga
Î1 + ea1zt

. s19d

It is not difficult to construct the final density ratio and the
ratio of compressed sound speeds at the interface:

R=
raf

rbf
=

raf

ra0

rb0

rb1

rb1

rbf
R0, s20d

N =
caf

cbf
=

caf

ca0

cb0

cb1

cb1

cbf
N0, s21d

whereN0=ca0/cb0=Îgb/ sgaR0d is the ratio of the pre-shock
sound speeds at the interface.

B. Perturbation equations

In this section we will briefly review the equations that
govern the perturbed flow between the reflected and trans-
mitted fronts. We follow essentially the calculations shown
in previous works[7,9]. The velocity, pressure, density, and
entropy are assumed to satisfy the usual conservation laws in
the space between the contact surface and the shocks:

]r

]t
= − ¹W . srvWd, s22d

]vW

]t
+ svW . ¹W dvW = −

1

r
¹W p, s23d
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]s

]t
+ svW . ¹W ds= 0, s24d

which express the conservation of mass, momentum, and
entropy, respectively. We linearize the flow equations, as-
suming that each quantityf can be decomposed asf0+df,
wheref0 is the unperturbed(zero order) value, calculated in
the previous section, anddf is the small fluctuation gener-
ated because the wave fronts are corrugated. We will always
assume thatdf!f0. We assume that the corrugated inter-
face has the dependence cosky, and it is not difficult to see
that the pressure perturbations will also depend on the tan-
gential coordinate like cosky. Besides, the velocity compo-
nents satisfy:dvx,cosky and dvy,sinky. It is convenient
to work with dimensionless perturbed quantities. We define
(the subindex “m” refers either to “a” or “ b” ):

dpmsx,y,td = rmfcmfuiskc0ddp̂msx,tdcosky, s25d

dvxmsx,y,td = uiskc0ddumsx,tdcosky, s26d

dvymsx,y,td = uiskc0ddvmsx,tdsinky. s27d

drmsx,y,td = uiskc0ddr̂msx,tdcosky. s28d

Thanks to the entropy conservation along the fluid particles
path[Eq. (24) above], the density perturbations are related to
the pressure perturbations by

]dp

]t
= cmf

2 ]dr

]t
. s29d

On the other hand, it is easy to derive the expression for the
vorticity perturbations:

dvmsx,yd =
]dvymsx,y,td

]x
−

]dvxmsx,y,td
]y

= F ]dvmsx,td
]x

+ kdumsx,tdGsinky; gmsxdsinky. s30d

After linearizing the equations of motion, we obtain the fol-
lowing wave equations for the perturbations in pressure and
velocity (we omit the subscript “m” for simplicity):

]2dp̂

]skcftd2 −
]2p̂

]skxd2 + dp̂ = 0, s31d

]2du

]skcftd2 −
]2du

]skxd2 + du = gsxd, s32d

]2dv
]skcftd2 −

]2dv
]skxd2 + dv = −

dgsxd
dx

. s33d

It has been shown in previous works that the wave equation
for the pressure perturbations can be easily solved by making
a variable change, suggested by Zaidel’[6,7,9,16]:

kx= rm sinhum,

kcmft = rm coshum. s34d

In this new system of coordinates, the interface has the co-
ordinateu=0. The shock fronts, which move in thex,t vari-
ables, are now fixed in the new coordinates. That is, the
reflected shock coordinate is given by: tanhur =br =sur

+vid /cbf, whereur +vi is the velocity of the reflected shock
relative to the moving contact surface. Therefore,br is the
reflected shock Mach number with respect to the compressed
fluid “b”. Analogously, the transmitted shock moves in the
negative direction with velocity −ut x̂ which makes the trans-
mitted shock coordinate in the new system to be given by:
tanhut=−bt=−sut−vid /caf,0. The quantity ut−vi is the
transmitted shock speed relative to the material interface.
The quantitybt is the transmitted shock Mach number with
respect to the fluid between the transmitted shock and con-
tact surface.

The wave equation for the pressure perturbations in both
fluids can be rewritten in the following form:

rm
2 ]2dp̂m

]rm
2 +

]dp̂m

]rm
+ rmdp̂m =

]dlm
]um

, s35d

where the auxiliary functiondlm is given by

dlm =
1

rm

]dp̂m

dum
. s36d

To get the exact solution of the wave equation, it is better to
work with the Laplace transform of the perturbed quantities,
as suggested by Zaidel’[16]. We define Laplace transforms
in the variablerm with capital letters, for any perturbed quan-
tity dfm, as

dFmsum,smd =E
0

`

dfmsrm,smde−smrmdrm. s37d

Laplace transforming the wave equation[Eqs.(35) and(36)],
we deduce, after some long algebra[9], that the Laplace
function of the pressure perturbations can be cast in a very
useful form. We further definesm=sinhqm, and obtain

dPmsum,smd =
Fm1sqm − umd + Fm2sqm + umd

coshqm
. s38d

The Laplace transform of the pressure derivativedlm can be
written in the form:

dLmsum,smd = Fm1sqm − umd − Fm2sqm + umd. s39d

The functionsFm1,2 have yet to be determined from the
boundary conditions at the shock fronts and at the contact
surface. As for their physical meaning, it can be shown, by
means of the model developed by Fraley[10], that the func-
tion Fm1 stands for the sound waves that leave the shock
surface toward the interface. The functionFm2 represents the
sound waves that travel from the contact surface toward the
corresponding shock front. We also note that the arguments
of these functions are displaced in ±u. This characteristic is a
consequence of two facts: at first, there is a material surface
that reflects the waves toward the shocks, that is, the contact
surface itself, and second, we will always have the Doppler
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shift at the fronts, as they are moving with a finite velocity in
the frame of reference fixed to the material interface[10]. It
is clear to foresee that these terms are of the utmost impor-
tance if we want to understand the instability evolution. This
is so, because they are the mathematical structures respon-
sible for describing the interaction between the fronts and the
material surface. To neglect the shifts inside them would be
equivalent to erasing from the problem the nicest character-
istic of this instability: the sonic interaction that exists be-
tween fronts and contact surface sincet=0+. In fact, not
taking the shifts into account could be only justified when
the shocks are very, very weak, because in that case, the
fronts separate almost immediately from the unstable inter-
face. They would travel at almost the speed of sound and,
thus, shocks and interface decouple very soon. The perturba-
tions emitted from the interface would take too long to arrive
to the shocks and come back to the interface to repeat the
process. However, this is no longer true for shocks of finite
intensity. The possibility of having freeze-out at the inter-
face, as discussed in Sec. I, comes from the fact that
Fm1,2sq±ud are important and they are not negligible in the
general case. They are not only necessary to follow the sonic
interaction, but also to describe the vorticity generation in
the bulk. The details of the interaction between shocks and
interface, which would help to explain the asymptotic freeze-
out at the contact surface, are unfortunately hidden in the
cumbersome mathematical structure ofFm1,2. In the follow-
ing sections we will learn how to deal with them and obtain
the desired conditions for freeze-out.

C. Boundary conditions

It is convenient to briefly review the boundary conditions
at the shock fronts and at the material interface. This will
allow us to construct the reverberating sound wave functions
Fm1,2 and solve the perturbation problem. In the next section,
these results will be used to determine the exact conditions
that must be satisfied to have perturbation freeze-out at the
contact surface.

1. Boundary conditions at the reflected shock front

Following Richtmyer[1], it is possible to arrive at an
equation that involves the partial derivatives of the pressure
with respect to time and normal coordinate, at each shock
front. We will not repeat those calculations here, but merely
write the final results, as they will be useful for the discus-
sion that follows. After expressing that equation in the coor-
dinatesr ,u and taking its Laplace transform, we arrive at an
equation that relates the perturbed quantities at the shock:
dPrssd anddLrssd. We omit the subscript “b” in the variable
qb in this paragraph, and indicate the functions pertaining to
the reflected shock with a subscript “r.” The boundary con-
dition at the shock front can be put in the following form:

dLrsqd = ab1sqddPrsqd + ab2sqd, s40d

wheredPrsqd;dPbsur ,sinhqbd and analogously withdLr:

ab1sqd = ab10 sinhq +
ab11

sinhq
. s41d

The quantitiesab10 andab11 are given by

ab10 =
hr − 1

2br
, s42d

ab11 = −
br

1 − br
2

hr + 1

2

rbf

rb1
, s43d

where the parameterhr is [13]

hr =
pf − p1

Vb1 − Vbf
SdV

dp
D

RH
, s44d

the derivative is taken along the reflected shock Rankine-
Hugoniot curve in the final state,V=1/r is the specific vol-
ume.

The functionab2sqd is

ab2sqd = − dvyb
0 sinhur

sinhq
, s45d

where dvyb
0 is the initial tangential velocity behind the re-

flected front, defined in Eq.(3). The boundary condition
written in Eq. (40) can be recast in terms of the functions
Fb1,2 by means of Eqs.(38) and(39). After some algebra, we
arrive at

Fb1sqd =
dvyb

0 sinhur

sinhsq + urdhr
−sq + urd

−
hr

+sq + urd
hr

−sq + urd
Fb2sq + 2urd,

s46d

where we have used the functionshr
± defined by

hr
±sqd =

ab1sqd
coshq

± 1. s47d

2. Boundary conditions at the transmitted shock front

We can manage the boundary conditions at the transmit-
ted front in the same way as has been done with the reflected
shock. We get the following corresponding equation(we do
not append the subscript “a” to the variableq in this para-
graph, to simplify the notation):

dLtsqd = aa1sqddPtsqd + aa2sqd. s48d

We have defineddPt;dPasut ,sinhqd and similarly withdLt.
The auxiliary functionaa1 is

aa1sqd = aa10 sinh q +
aa11

sinh q
, s49d

where the quantitiesaa10 andaa11 are

aa10 =
ht − 1

2bt
, s50d
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aa11 =
bt

1 − bt
2

ht + 1

2

raf

ra0
, s51d

with ht a parameter defined at the transmitted shock Rankine-
Hugoniot curve[13]:

ht =
pf − p0

Va0 − Vaf
SdV

dp
D

RH
. s52d

The functionaa2sqd is

aa2sqd = − dvya
0 sinh ut

sinh q
. s53d

Similarly, as we have done with the reflected front, we can
recast the transmitted shock boundary condition in terms of
Fa1,2:

Fa2sqd =
dvya

0 sinhut

sinhsq − utdht
+sq − utd

−
ht

−sq − utd
ht

+sq − utd
Fa1sq − 2utd,

s54d

where the auxiliary functionsht
±sqd are given by

ht
±sqd =

aa1sqd
coshq

± 1. s55d

Up to now, we have arrived at two equations[Eqs. (46)
and (54)] that relate four unknown functions[Fa1,2sqad and
Fb1,2sqbd]. We need two additional equations to close the
problem. Furthermore, it is noted that the variablesq are
different on each side of the contact surface. The task of
finding the additional pair of equations and the relation be-
tweenqa andqb is left for the next paragraph, when we look
at the boundary conditions at the material interface.

3. Boundary conditions at the contact surface

At the boundary that separates both fluids, we require, as
usual, the continuity of pressure and normal acceleration per-
turbations[1,3,4],

RNdp̂asx = 0,td = dp̂bsx = 0,td, s56d

]dp̂a

]x
=

]dp̂b

]x
. s57d

To get useful relationships in terms of the functionsF, it
is convenient to change variables fromx,t to r ,u on each
fluid, separately. Besides, we note thatrasx=0d=kcaft;ta

andrbsx=0d=kcbft;tb. If we further make a Laplace trans-
form of Eqs.(56) and (57), we must keep in mind that the
Laplace variablessa=sinhqa, andsb=sinhqb, at each side of
the interface should be related bysakcaft=sbkcbft. That is,
Nsa=sb. After some algebra, and using Eqs.(38) and (39)
evaluated atx=u=0, we arrive at the following relationships:

Fa2sqad =
2Fb2sqbd − sD − 1dFa1sqad

D + 1
, s58d

Fb1sqbd =
2DFa1sqad + sD − 1dFb2sqbd

D + 1
, s59d

whereD=Rcoshqb/coshqa.
Furthermore, Eqs.(46), (54), (58), and (59) can be re-

duced to the system:

fa3Fa1sqad + Fb2sqbd = fa1 + fa2Fa1sqa − 2utd, s60d

Fa1sqad + fb3Fb2sqbd = fb1 + fb2Fb2sqb + 2urd. s61d

The auxiliary functionsfm1,2,3 are defined by

fa1 =
D + 1

2

dvya
0 sinhut

sinhsqa − utdht
+sqa − utd

,

fa2 = −
D + 1

2

ht
−sqa − utd

sinhsqa − utdht
+sqa − utd

,

fa3 =
1 − D

2
,

FIG. 5. Curves of freeze-out for the parameters shown. The
isentropic exponent of fluid “a” is alwaysga=1.8.

FIG. 6. Same as Fig. 5, but forga=1.5.
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fb1 =
D + 1

2D

dvyb
0 sinhur

sinhsqb + urdht
−sqb + urd

,

fb2 = −
D + 1

2D

hr
+sqb + urd

sinhsqb + urdhr
−sqb + urd

,

fb3 =
D − 1

2D
.

We see that the sonic functions on the right-hand sides of
Eqs.(60) and(61) are shifted, due to the Doppler shift at the
shock fronts. This characteristic certainly complicates the
mathematical procedure to get an analytically closed solu-
tion. Nevertheless, as has been shown in Ref.[9], we can
always get the exact growth rate by means of an adequate
iteration procedure which converges very fast.

4. Asymptotic perturbation velocities at
the rippled contact surface

Our next task is to derive an expression for the asymptotic
normal perturbed velocity atx=0. This can be done, noting
that the time integral of the linearized tangential momentum
equation fromt=0+ up tot=`, at both sides of the interface,
gives us

Rsdvya
` − dvya

0 d = sdvyb
` − dvyb

0 d, s62d

wheredvym
` is the asymptotic value of the tangential velocity

at x=0. Furthermore, we also have the following relation-
ships, as can be deduced from the definitions of the functions
F from Eqs.(38) and (39) [9]:

dvi
` = Fm2sqm = 0d − Fm1sqm = 0d, s63d

dvym
` − dvym

0 = Fm2sqm = 0d + Fm1sqm = 0d, s64d

where m can be either “a” or “ b.” We further define the
following quantities:

Fa = dvi
` + dvya

` , s65d

Fb = − dvi
` + dvyb

` . s66d

Thanks to Eqs.(46), (54), and(62)–(66), we get the expres-
sions for the parametersFa andFb:

Fa = F1 +
4sut − vid

vi
s1 + bthtd−1G−1

fdvya
0 − 2Fa1s− 2utdg,

s67d

Fb = F1 +
4sur + vid

v1 − vi
s1 + brhrd−1G−1

fdvyb
0 − 2Fb2s2urdg.

s68d

Finally, adding and substractingdvi
` in Eq. (62), we arrive

after some simple manipulation to an expression for the
growth rate at the interface, already presented in Eq.(5):

dvi
` =

dvyb
0 − Rdvya

0

R+ 1
+

RFa − Fb

R+ 1
. s69d

It can be seen, according to Ref.[9], that the sonic param-
etersFa,b can be rewritten as averages of the vorticity pro-
files at both sides of the interface, as left by the corrugated
fronts in the interior of the fluids. In fact, as has been seen in
Refs.[6,7], the vorticity generated at either side of the inter-
face can be formally written as

dvbsx,yd = gbsxdsinky= Vbsdp̂rdt0sxd=x/sur+vid
sinky,

s70d

dvasx,yd = gasxdsinky= Vasdp̂tdt0sxd=x/sut−vid
sinky, s71d

where the quantitiesVa,b are

Va = −
s1 + bthtdvi

2btsut − vid
, s72d

Vb =
s1 + brhrdsv1 − vid

2brsur + vid
. s73d

From the last equations, it is recognized that the vorticity is
generated atx at the timet= t0sxd at which the shock arrives
to that point. The continuity of tangential velocity across the
corrugated front is responsible for generating the rotational
part of the velocity field which makes up the vorticity field
described in the above equations. After some additional al-
gebra(explained in Refs.[7,9]), the sonic parametersFa and
Fb can be seen to be equal to the following spatial averages
of the vorticity field:

Fa = − Va sinhutdPtssa = − sinhutd, s74d

Fb = Vb sinhurdPrssb = sinhurd. s75d

Whatever representation we choose to deal withFa,b, they
have to be calculated with the aid of the functionsFm1,2
which describe the traveling pressure fluctuations. But to get
them, we must solve the functional equation system of Eqs.
(60) and (61). The details of the procedure to get the exact
solution of those equations has been explained in Ref.[9]
and will not be repeated here. We just remind that the pro-
cess is an iteration sequence which gives us improved values
of the sonic functionsFm1,2 with increasing accuracy. We
only review the very basic steps. In fact, Eqs.(60) and (61)
can be rewritten as

F = RF0 + TF , s76d

whereF=sFa1sqad ,Fb2sqbdd, and the matricesR and T are
given by

R = S− 2sD − 1d/sD + 1d2 4D/sD + 1d2

4D/sD + 1d2 2DsD − 1d/sD + 1d2D s77d

T = R ·Sfa2e
−2utDa 0

0 fb2e
2urDb

D . s78d

In the last matrix, the exponents are to be understood as
traslation operators, that act on the functions to their right
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evaluating them at a shifted value, that is:e−2utDafFa1sqadg
=Fa1sqa−2utd, and similarly for the variable “b” (whereDa

=d/dqad. Equation (76) can be solved by iteration by a
proper choice of the guess function. This is explained in
some detail in Ref.[9]. We quote here the iteration chain:

Ffng = J0 + TF fn−1g, s79d

whereJ0=RF0. The seed functions, with which we start the
iteration, are given by[9]

Fb2
f0gsqbd =

fa1 − fb1sfa3 − fa2d
1 − sfb3 − fb2dsfa3 − fa2d

. s80d

Fa1
f0g = fb1 − fb3Fb2

f0gsqbd + fb2Fb2
f0gsqb + 2urd. s81d

It has been shown that the iteration process defined by Eqs.
(79)–(81) give very precise values for the functionsFm1,2,
and hence, a highly accurate determination of the rate of
growth dvi

` [9].

III. CALCULATION OF FREEZE-OUT CONDITIONS

In this section we calculate the points, in the space of
pre-shock parameters, for which we can find asymptotic
freeze-out of the normal ripple velocity. The idea is to set the
value of Eq.(5) [or Eq.(69)] to zero and solve for the initial
density jump by iteration. We rewrite the expression that
gives the asymptotic normal velocity from Eq.(5), in the
form:

dvi
` = dvirrot + dB s82d

where

dvirrot =
dvyb

0 − Rdvya
0

R+ 1
s83d

is the irrotational contribution to the ripple asymptotic veloc-
ity and

dB =
RFa − Fb

R+ 1
s84d

is the contribution from the vorticity deposited in the interior
of both fluids(or equivalently, it is the asymptotic effect of
the sound wave reverberations that took place during the
compressible phase: 0, t,`) [5,7,9]. The idea is to calcu-
late dvi

` with a first guess for the density jump, which we
choose:R0

f0g=1. With this initial guess value ofR0 we calcu-
late the corresponding value ofdBf0g according to the defi-
nitions of the previous section. The next step is to rewrite the
equations that define the transmitted and reflected shock in-
tensities[Eqs.(10) and(11)], but allowing now forR0 to be
another unknown. Therefore, Eq.(69) must be added as an
additional equation, as we will have a new set of three un-
knowns:zr

f1g, zt
f1g, andR0

f1g. Once we solve for them, we go
again to Eq.(82) and calculate the new value ofdBf1g, using
the iterated new valueR0

f1g. The new value ofdB is used to
calculate new values for the shock intensities and the density
ratio, which in turn are used to calculate the following new

value ofdB and so on. The process does converge quite fast
and we achieve enough digits of precision with few iteration
steps. As the precision in the determination ofR0 increases,
the value ofdvi

` is decreased by many orders of magnitude
after several iteration steps, approaching the condition for
freeze-out:dvi

`=0.
We write here thenth iteration step. The system of equa-

tions that gives the shock intensities and the pre-shock den-
sity jump is

zi

Î1 + eb1zi

− zr
fngÎ s1 + zid

s1 + eb1zr
fngd

rb0

rb1
=Î gb

gaR0
fng

zt
fng

Î1 + ea1

,

zt
fng = zi + s1 + zidzr

fng,

dvirrot
fng = − sBfn−1g, s85d

wheredBfn−1g is calculated with

dBfn−1g =
Rfn−1gFa

fn−1g − Fb
fn−1g

Rfn−1g + 1
. s86d

In Fig. 5 we show slices of the functionR0=R0sga,gb,Mid,
for which we should expect freeze-out. The value chosen for
the isentropic exponent of the heavier fluid isga=1.8. That
of the lighter fluidsgbd is varied between 1.1 and 1.7 and the
incident shock Mach numbersMid is varied between 1 and 5.
In Fig. 6 we show the same function forga=5/3, with
1.05øgbø1.4. We see that the values of the initial density
ratio at which freeze-out is observed are very nearR0=1. We
have not found freeze-out for larger values ofR0 [10,11].
This is certainly related to the fact evidenced in Sec. I: to be
near freezing-out conditions, the transmitted shock speed
should be higher than the incident shock velocity to allow for
the tangential velocity on the heavier side to have the same
sign as the tangential velocity on the lighter side. This seems
to be only achievable for fluids of nearly equal densities, at
least for the case in which a shock is reflected. We also see
that, for the parameters range studied here, the density ratio
at which freeze-out is expected, slightly increases as the in-
cident shock Mach number increases and the lighter fluid
becomes more compressible. We could not find freeze-out
interchanging the values ofg at both sides of the interface.
That is, the fluid in which the transmitted shock travels
should have a larger isentropic exponent than the other fluid
(the “incident” fluid). Otherwise, the speed of the transmitted
front cannot be higher than the incident shock speed, and the
circulation at the interface could not change the sign, a nec-
essary condition for freeze-out as discussed before. In fact, if
we interchange the values ofg (makingga,gb), we cannot
have a reflected shock, because the density ratio is almost
unity. That is, forR0,1, Eq.(85) does not have a real solu-
tion for ga,gb [3]. In the next section we discuss the results
obtained and compare them with previously reported freeze-
out situations.

IV. DISCUSSION

In this section we will discuss the results obtained with
the method outlined in the previous paragraphs. It is shown,
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based on the cases discussed in Sec. I, that we can get an-
other useful picture of freeze-out. As mentioned in Sec. I, it
turns out that freeze-out can be thought of as the result of an
adequate balance between the tangential velocities generated
at the contact surface, att=0+. Accordingly, there should
exist a critical value for the ratioK0=dvya

0 /dvyb
0 , such that,

when K0 reaches that specific value, freeze-out would be
observed. ForK0 above or below such critical value, non-
zero growth of either sign would occur. After showing this,
the accuracy of a weak shock approximation to freeze-out is
discussed. Finally, previously reported cases of freeze-out
are studied with some detail.

A. Critical value of dvya
0 /dvyb

0

As we have seen in Sec. I, depending on the relative val-
ues of the transmitted and incident shock speeds, we can
change the phase of the transmitted shock with respect to the
pre-shock ripple at the interface. Above some minimum
value of the ratiout /ui, we would be able to see an indirect
phase inversion of the interface ripple, as had been previ-
ously found in Ref.[3]. Therefore, for some specific value of
ut /ui we could expect zero asymptotic growth. That this is
actually feasible has been demonstrated in the previous sec-
tions and it has been shown that there is a continuum of
values of the four dimensionless parameters at which this
effect is possible. We could ideally think of the region of
freezing-out as a hypersurface of the form:R0
=R0sga,gb,Mid, as discussed in Ref.[3]. Unfortunately, it is
not possible to show a simple closed formula that defines this
hypersurface. Due to the complexity of the procedure fol-
lowed to identify the freeze-out zones, it is not evident to
foresee whether such a surface exhibits interesting topologi-
cal features or not. For example, it could be possible that this
surface showed kinks or folds, or that there could be even
unconnected islands of freeze-out in the parameter space. In
this work we have only found freeze-out regions that cluster
around theR0<1 region. The only way to rule in/out the
possibility of those fascinating properties, would be an ex-
haustive mapping of the whole parameter space using the
algorithm presented in the previous section. This task is be-
yond the scope of the present work and is left for future
research. Presented in this way, the reason for freeze-out
seems to be hidden in a subtle and precise tuning of two
zero-order speeds, which can be selected by proper choice of
the four parameters of the problem. Once the exact point of
freeze-out has been chosen, the asymptotic normal velocity
vanishes for all perturbation wavelengths. That is, this is not
a kind of selective stabilization which holds above certain
threshold value for the wave number, as is usual in instabili-
ties driven by gravity[Rayleigh-Taylor instability(RTI)], or
shear velocity [Kelvin-Helmholtz instability (KHI )], and
acted on by some other mechanism as surface tension or
dissipative processes like viscosity, thermal conduction or
ablation(as is commonly found in ICF environments) [5,17].
There is no dissipative physics here and the fluids in which
the shocks are traveling are taken to be ideal gases. The only
apparent mechanism that drives the surface ripple toward
freezing-out is the “push and pull” effect, provided by the

continuous influence of the pressure field radiated by the
shock waves, which arrive with some delay to the interface.
These waves refract there, altering the kinematics of the sur-
face ripple, to arrive at the shock some time later, and repeat
the process. Until the shocks are some wavelengths away
from the contact interface, the contact surface ripple will
oscillate in damped fashion to stop asymptotically.

We present here the conditions for freeze-out in a slightly
different, but also convenient way. As discussed in Sec. I,
there should be a relationship betweendvya

0 and dvyb
0 at the

exact point of freeze-out. To stress this fact, we define the
parameter:

K0 =
dvya

0

dvyb
0 . s87d

As we have seen in Sec. I, we need that both tangential
velocities have the same sign. That is, we must haveK0
=K0

fo for some characteristic valueK0
fo.0. For K0,K0

fo the
growth of the ripple should be in the positive direction. For
K0.K0

fo, we should see an indirect phase inversion of the
interface and hence, growth in the negative direction. Our
task is to show that this is indeed the case.

After some lengthy algebra, we can rewrite the param-
etersFa1s−2utd andFb2s2urd in the following, more suitable
form:

Fa1s− 2utd = sa1dvya
0 + sb1dvyb

0 ,

Fb2s2urd = sa2dvya
0 + sb2dvyb

0 , s88d

where the quantitiessa1,2 andsb1,2 can be obtained with an
iterative process from Eqs.(79)–(81). The exact form of the
recurrence relationships necessary to obtain the four quanti-
tiessa1,2, sb1,2 is not strictly necessary right now, in order to
follow the qualitative discussion of this section. We should
note, however, that instead of dealing with a functional equa-
tion for the functionsFa1 andFb2, we could express the bulk
term dB [Eq. (84)] in terms of thes quantities mentioned
above. The interested reader could work out the correspond-
ing new functional equations forsm1,2 without any big diffi-
culties. As our interest here is only to reinterpret the physics
behind the phenomenon of freeze-out, we will only work
with Eq. (88) above. In fact, inserting the shock functions
into the expression for the bulk vorticity term in Eq.(82), we
arrive at

K0 =
dvya

0

dvyb
0 =

1

R

Zb − 1

Za − 1
+

2Zasb1

Za − 1
−

2Zbsb2

RsZa − 1d

1 −
2Zasa1

Za − 1
+

2Zbsa2

RsZa − 1d

+ SR+ 1

R
D

dvi
`

dvyb
0

sZa − 1dF1 −
2Zasa1

Za − 1
+

2Zbsa2

RsZa − 1dG
,

s89d

where the quantitiesZa,b are taken from Eqs.(67) and (68):
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Za = F1 +
4sut − vid

vi
s1 + bthtd−1G−1

,

Zb = F1 +
4sur + vid

v1 − vi
s1 + brhrd−1G−1

. s90d

Equation (89) above is the same as Eq.(69), and has the
same information regarding instability growth at the material
surface. However, some immediate, more apparent conclu-
sions can be drawn from Eq.(89). At first, it is clear that, if
we requiredvi

`=0, the quantityK0 should have a definite
valueK0

fo, which is the first term on the right-hand side of Eq.
(89). For K0,K0

fo, we would get positive growth and for
K0.K0

fo, we would get negative values of the asymptotic
growth. It is also clear that the conditionK0=K0

fo could be
used instead of Eq.(69), as the equation used to find freeze-
out. This would amount to changing the structure of the it-
eration process described in Eq.(85). The results of doing it
are exactly the same as those obtained by solving Eq.(85)
and therefore, nothing essentially new is gained, at least from
the operational point of view. As a consequence, this strategy
will not be used to re-derive the freezing-out conditions
quantitatively, and the discussion will only remain at the
qualitative level. The usefulness of presenting Eq.(89) is that
it actually confirms our previous picture of freeze-out, as has
been thoroughly discussed in Sec. I. That is, there should be
enough vorticity on one side of the interface(the fluid with
larger isentropic exponent) such that an indirect phase inver-
sion is induced. However, at freeze-out, the phase inversion
is never complete, because the interface stops growing some
time later. Ifdvya

0 /dvyb
0 has the correct value, the subsequent

“push-pull” effect of the incoming sound waves will not be
strong enough to force the interface growing in either direc-
tion, and hence the interface ripple would stop for large
times. It will, perhaps, grow in the negative direction for a
while and stop growing asymptotically. If the ratioK0 has
not the correct value, then depending on which side the tan-
gential velocity is the largest, the incoming sound waves will
induce growth toward the side privileged by the difference
K0−K0

fo. It can be seen, after some long and tedious but not
difficult algebra, that the quantitiesZasa1 andZbsb2 are neg-
ligible for very weak shocks. Then, it is tempting to simplify
the expression forK0

fo above with just the first fraction in the
numerator of the first term in Eq.(89). That is, we could
define an approximate expression for the threshold value of
K0:

K0
approx;

1

R

Zb − 1

Za − 1
. s91d

In Fig. 7 we study the values of the exact quantityK0
fo and its

approximate estimationK0
approx for the casesga=1.8 and

1.1øgbø1.7 for 1øMi ø5, as used in Fig. 5. The solid line
is the exact value for the velocity ratio[Eq. (89)] and the
dashed lines are the values given by the approximate expres-
sion [Eq. (91)]. We see that except at very high compres-
sions, the approximate expression does a good job in predict-
ing the critical velocity ratio at freeze-out. An obvious
conclusion from the results shown in Fig. 7 is the fact that

dvya
0 .dvyb

0 seems to be a necessary condition for freeze-out.

B. Weak shock approximation in the search of freeze-out

When we look at Eq.(82) we see that the rate of growth
at the interface is composed by two terms: an irrotational
contribution sdvirrotd, and a bulk contribution which ex-
presses the fact that there is vorticity continuously distrib-
uted at both sides of the interface[5–10,12]. This vorticity
field is the memory of the previously corrugated shock fronts
that emitted sound pressure perturbations and generated sta-
tionary profiles of vorticity and entropy fluctuations along
their way. Making the bulk term in each side of the interface
strictly equal to zerosdB=0d would be actually equivalent to
ignoring the role of the corrugated shock waves aftert=0+
or to assuming that the fronts that separated away from the
interface were of an isentropic nature. This last possibility
could be certainly the case if those fronts were rarefaction
fans expanding away from the contact surface, as discussed
by Velikovich [4]. Indeed, his symmetrical Riemann problem
for the rarefactions escaping away would actually perfectly
fit this idealized situation, because in this case it would be
Fa=Fb=0 exactly, and not merely as an approximation. In
the rarefaction reflected RM instability we find, in fact, a
situation in which one of the bulk parameters is exactly zero:
the one pertaining to the expanding fluid, between the con-
tact surface and the rarefaction trailing edge[4,5,18]. How-
ever, inside the fluid compressed by the transmitted shock we
would still have the parameterFaÞ0. This is consequence of
the fact that rarefaction fans are isentropic and hence
entropy/vorticity preserving, while corrugated shocks are
not. The conclusion is apparent: whenever we have a non-
isentropic corrugated front which escapes away from the in-
terface, we must expect entropy and vorticity perturbations
which will affect the asymptotic growth at the interface at a
later time. These vorticity fluctuations cannot arrive at the
interface, as they are frozen to the fluid elements at the po-
sition where that vorticity has been created. Therefore, the
contact surface ripple has no way “to know” about them
immediately and adjust its circulation to the evolving veloc-

FIG. 7. Curves(solid) of the parameterK0
fo in freeze-out[Eq.

(89)], as a function of the incident Mach numbersMid, for the
parameters shown. The dashed lines are calculated with the ap-
proximate valueK0

approx, as discussed in Eq.(92).
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ity field in the bulk. The only way to adjust the velocity
values at both sides of the interface and make them compat-
ible with the vorticity field on each fluid is by means of the
sound waves emitted by the fronts in the interval of time
0, t,`. Therefore, there is no contradiction in the “dual”
interpretation we have assigned to the parametersFa andFb.
They can be seen as the dynamical effect of the sound waves
pressure field during the period 0+ø t,`, and also as the
asymptotic manifestation of that interaction in the form of a
vorticity field at both sides of the interface fort→`. The
space integral of such vorticity field[for example, either Eq.
(74) or (75)] has the correct value to ensure that the final
asymptotic velocity field has consistently evolved from the
initial circulation deposited at the interface to its final value.
It is clear that the values ofdG0 anddG` must be consistent
with any vorticity/velocity perturbation field in the bulk, as is
clearly required by Eqs.(65), (66), (74), and(75). The only
way to make the smooth transition from that initial circula-
tion dG0=dvyb

0 −dvya
0 to the corresponding asymptotic growth

dvi
` is to allow for the action of the early sound waves,

which baroclinically would change the velocities at the con-
tact surface. But these waves must come from somewhere
ahead of the contact surface. In fact, that job can be done
either with a pair of shocks or a pair of rarefaction fans, or
with a shock and a rarefaction[4,5,7,9]. In the double rar-
efaction case(that is, the symmetrical Riemann problem dis-
cussed in Ref.[4]), the sound waves just alter the initial
circulationdG0, transforming it to its asymptotic valuedG`,
without generating any vorticity in the bulksFa=Fb=0d. The
final velocity field will be, in this case, exactly irrotational.
On the other hand, in the shock case(or in the case of having
only one rarefaction reflected), the sound waves that arrive to
the interface, alter the the initial circulation at the interface
and bring it to its final value in a way that is consistent with
the conditions expressed mathematically in Eqs.(65)–(68),
(74), and(75). As we know from previous work[7,9], these
conditions are necessary requirements that must be fulfilled
to ensure the boundedness of the asymptotic velocity fluc-
tuations very far from the contact surface(that is, at uxu
→`). As we are concentrating here on the shock case, we
leave the rarefaction reflected situation for future work. A
natural question to be asked is then: is it possible to deal with
another more simple equation that defines freeze-out, which
does not need to deal with the functional equations system
defined in Eqs.(79)–(81)? That is, a simplified expression
which can neglect the bulk vorticity term, in some range of
the physical variables that define the problem? According to
our knowledge, this can be done exactly, just by requiring the
vanishing of dvirrot in those cases in which we have no
shocks. But this is not the case discussed here. However, as
can be seen from simple inspection in Eqs.(72) and(73), the
bulk vorticity parametersVa,b, are quantities of second order
in the shock intensityzi for very weak shocks[7,9]. This
means that we could roughly neglect the termdB in Eq. (82),
as a first approximation, and compare the approximate re-
sults with the exact procedure described before. That is, we
look for the set of points in the space of initial parameters,
for which the following equation holds, together with the
conditions to have a reflected shock[Eqs.(10) and (11)]:

dvirrot =
dvyb

0 − Rdvya
0

R+ 1
= 0. s92d

It must be stressed that Eq.(92) has no information of the
bulk vorticity, or in other words, no information of the
shock-interface interaction through the multiple reverbera-
tions, giving us limited physical information of the instability
evolution when vorticity production could be important
(compressible fluids and/or strong shocks). Using Eq.(92)
beyond its reduced limit of validity is certainly not justified
by accidental or coincidental partial agreements with the ex-
act solution at any higher shock intensities. In Fig. 8 we
show the results deduced from the last equation, for a par-
ticular case:ga=1.8 andgb=1.1. The incident shock Mach
number is varied in the interval 1øMi ø5. We also show the
corresponding curve calculated exactly with the bulk contri-
bution [Eqs. (85) and (86)]. The agreement is reasonably
good for quite low compressions but it worsens for moderate
to strong shocks. In Fig. 9 we show the actual growth veloc-

FIG. 8. Comparison of the curves predicted for freeze-out with
the complete Eq.(69) and the irrotational approximation given by
Eq. (92).

FIG. 9. Exact temporal evolution and asymptotic value for the
normal velocity for the parameters shown.
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ity at the contact ripple forMi =5 andR0<1.342 030 57. . .
for which freeze-out would be expected according to Eq.
(92). Despite the fact that the asymptotic value is lowsdvi

`

,0.012uikc0d, it is however, not zero, and would lead to
permanent deformation of the interface.

C. Comparison with previously predicted cases of freeze-out

The freeze-out problem has been attacked several times in
the recent past as evidenced in the literature. Fraley was the
first to mention, to our knowledge, the possibility of having
zero growth for valuesR0,1.5 in the shock reflected case
[3–11]. Mikaelian [11] has studied for the first time this
problem with some detail in the weak shock limit, using the
model previously developed by Fraley[10]. Mikaelian reob-
tained the closed analytical expression given by Fraley for
the growth rate, and derived a freeze-out condition for weak
compressions andR0=1. The conclusions of Mikaelian have
been later reviewed by Brouillette[19]. The approximate
growth rate, as obtained by Mikaelian, can be rewritten in
our notation as

dvi
Mik = vikc0SAT0 +

zi

zi + 1

J

gb
D , s93d

whereAT0=sR0−1d / sR0+1d is the pre-shock Atwood num-
ber, andJ is a quantity defined by

J =
1

2
Fsw − 1d2 − R0 − 2w +

2

w
S s1 + AT0d2

1 − AT0
+ s1 − AT0dw2D

3S1 − TT0

w + 1
DG , s94d

andw=ÎR0ga/gb. This last expression for the growth rate is
valid in the limit: zi !1. It contains terms up to second order
in zi and therefore, it does contain some of the information
carried by the bulk vorticity termdB. Hence, its predictions
should be more accurate for low intensity shocks than the
predictions of Eq.(92) are. It is easy to see, as discussed in
Ref. [11], that for fluids with equal pre-shock densitiessR0

=1d, the above expression for the growth rate vanishes ex-
actly if ga=4gb. This finding confirms our conclusion, de-
rived earlier, that the fluid in which the transmitted shock
travels should have a larger isentropic exponent than the
other fluid. In Fig. 10, we compare Eqs.(82), (83), and(93)
for the casega=4.4, gb=1.1 for R0=1 for incident shock
Mach numbers between 1øMi ø1.7. We show the actual
growth rate calculated with the exact formula given by Eq.
(82), which is indicated with the solid line. The growth pre-
dicted by the irrotational assumption is shown with the
dashed line[Eq. (83)]. The growth predicted by Mikaelian
with Eq. (93) would be a perfectly horizontal line(zero
growth) starting at the pointMi =1 (not shown). As sus-
pected, the two conditionsR0=1 and ga=4gb do not give
exact freeze-out of the normal velocity at any intensityzi
!1, except atMi =1. However, the growth rate keeps very
low sdvi

`,10−4 kuic0d until incident Mach numbers of the
order ofMi ,1.2. With the aid of Eqs.(85) and(86) it can be
seen that there is real freeze-out atMi <1.623 56. . . . The
velocity values in the vertical axis have been indicated with
a logarithmic scale to accurately emphasize the large range

of variation as a function of the incident shock intensity. As
commented before, the steep gradient ofdvi

` as a function of
Mi which occurs near the freeze-out pointsMi

<1.623 56. . .d could be indicating to us the possibility of a
rich topological structure for the freeze-out hypersurface. In
particular, this hypersurface could be even double-valued or
exhibit disconnected regions or islands of freeze-out far
away from the zoneR0,1. Right now, the development of a
simpler mathematical picture of that surface does not seem
an easy task. An accurate mapping of this surface searching
for those mathematical characteristics in the whole space of
initial parameters would certainly be interesting and is left
for future work.

Soon after the prediction of Mikaelian, the numerical so-
lution to the linear RM instability problem by Yang, Zhang,
and Sharp[3] tried to identify freeze-out for the casega
=4.4,gb=1.1. The authors solved the same equations as here
with an improved numerical technique as used by Richtmyer,
and obtained the temporal evolution of the two important
cases in the RM instability, whether a shock or a rarefaction
are reflected. To compare with their findings, we have found
that, for the valuesga=4.4,gb=1.1, andMi =1.28, freeze out
is expected atR0=1.002 626 1582. . . . InFig. 11(a) we show
the interface tangential velocity of fluid “a” as a function of
time. The analogous quantity for fluid “b” is shown in Fig.
11(b). As can be seen, either the initial or final circulations at
the interface are negative, in agreement with the qualitative
picture discussed in the previous paragraphs. The asymptotic
values are: dvya

` <0.003 524uikc0 and dvyb
`

<0.000 865 0uikc0. It is noted a more or less general char-
acteristic of freeze-out: it is always seen thatFb is lower than
Fa by at least an order of magnitude. This could be attributed
to the relative “weakness” of the reflected shock compared to
the transmitted front. In Fig. 11(c) we show the contact sur-
face perturbation velocity as a function of time. The horizon-
tal axis is the dimensionless time defined by:ti =kuit. The

FIG. 10. Exact asymptotic normal velocity[solid curve, Eq.
(82)] for the casega=4.4, gb=1.1 in the weak shock limit. The
dashed curve has been calculated with the irrotational approxima-
tion given by Eq.(83).
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agreement with Fig. 19 of Ref.[3] is indeed very good.
As a final comment about the perturbation field in freeze-

out, we stress out again that despite the fact that the
asymptotic normal growth would be negligibly small near
the interface in freeze-out, there still could be considerable
motion in the bulk of the fluids, essentially due to the vor-
ticity that has been generated by the deformed fronts. Those
vorticity fields are responsible for the jump in the tangential
velocity at the interface, generating an asymptotic circulation
dG`=dvyb

` −dvya
` . Therefore, there is some kinetic energy

trapped inside the vortical motion in the bulk which is never
zero. Its effect would be that of perturbing even further any
subsequent shock launched toward the interface, despite the
interface being asymptotically quiescent. Only in the case in
which the bulk parameters(Fa andFb) are strictly zero, we
would have no velocity perturbations. However, this situa-
tion is not possible when there are two shocks separating
away from the interface. The task of computing the kinetic

energy that remains as rotational motion is beyond the scope
of this work and is also left for future research.

V. CONCLUSIONS

We have presented an analytic work to study the condi-
tions under which freeze-out of the Richtmyer-Meshkov
could be expected for the shock reflected case. Based on
previous analytical works, the mathematical conditions for
freezing-out are derived. It is seen that those conditions are
equivalent to asking for a given critical relationship between
the initial tangential velocities at the contact surface ripple,
as generated by the corrugated wave fronts. The role of the
sonic reverberating pressure waves between the interface and
the shocks is discussed, as is also emphasized the role of the
vorticity field left by the shock fronts at each side of the

FIG. 11. (a) Freeze-out case, studied in Refs.[3,10]. Tangential velocity on fluid “a.” (b) Same as(a), for the tangential velocity on fluid
“b.” (c) Same as(a), for the normal velocity at the contact surface.
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contact surface. An analytical procedure to derive the precise
location in the space of physical parameters has been shown.
An approximate equation only valid in the very weak shock
limit is also discussed. A similar approximation discussed in
the recent literature is also compared to our results. Previous
numerical findings are seen to agree quite well with the re-
sults presented here.
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