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Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected
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It is known that for some values of the initial parameters that define the Richtmyer-Meshkov instability, the
normal velocity at the contact surface vanishes asymptotically in time. This phenomenon, called freeze-out, is
studied here with an exact analytic model. The instability freeze-out, already considered by previous authors
[K. O. Mikaelian, Phys. Fluidss, 356 (1994), Y. Yang, Q. Zhang, and D. H. Sharp, Phys. Fluiis1856
(1994, and A. L. Velikovich, Phys. Fluids3, 1666 (1996, is the result of a subtle interaction between the
unstable surface and the corrugated shock fronts. In particular, it is seen that the transmitted shock at the
contact surface plays a key role in determining the asymptotic behavior of the normal velocity at the contact
surface. By properly tuning the fluids compressibilities, the density jump, and the incident shock Mach number,
the value of the initial circulation deposited by the reflected and transmitted shocks at the material interface can
be adjusted in such a way that the normal growth at the contact surface will vanish for large times. The
conditions for this to happen are calculated exactly, by expressing the initial density ratio as a function of the
other parameters of the problem: fluids compressibilities and incident shock Mach number. This is done by
means of a linear theory model developed in a previous WarkG. Wouchuk, Phys. Rev. E63, 056303
(200D)]. A general and qualitative criterion to decide the conditions for freezing-out is derived, and the
evolution of different caseffreeze-out and non-freeze-gutre studied with some detail. A comparison with
previous works is also presented.
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[. INTRODUCTION tion. The entropy and vorticity perturbations are frozen to the
fluids elements, and therefore, they are stationary in a system
The Richtmyer-MeshkoyRM) instability develops when- of reference co-moving with the shocked material interface.
ever an incident planar shock collides with a contact surfacdhe vorticity perturbations consist only of velocity fluctua-
separating two different fluids. Any small corrugation ini- tions and the entropy perturbations consist only of density
tially present at the material interface starts to grow and thé@nd temperature fluctuatiofis0]. On the contrary, the sound
fluids at both sides also develop perturbations in pressuréressure and density fluctuations, travel with the speed of
density, and velocity1-8]. In this work we will only con- sound of each material and bounce between both fronts, gen-
sider situations in which another shock is reflected at thérating at the same time an irrotational component for the
contact surfacg3,4]. In Fig. 1 we show the perturbed contact contact surface
surface that separates two fluids. The reflected and transmit-
ted shocks are also shown. We will consider ideal gases and
shocks of arbitrary intensity. The incident shock comes from  p,,
the right (fluid b) with the velocity uy; X in the laboratory
reference frame. The fluid velocity behind the incident shock
is —vq X. The incident shock compresses fluid ‘from its
initial density py to the valuepy,. It hits the interface at
=0. After the shock-interface collision, a reflected and tras-
mitted shock are formed. The reflected shock moves to the
right with velocity u, X in the laboratory frame. The density
of the fluid compressed by the reflected shockpis The
transmitted front moves to the left with velocityusx. It
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compresses fluidd” from py to the final valuepy;. In be- % Yo I
tween, the contact surface moves to the left with velocity "a"?,'f,',i,{ted reflected
-v; X. The interface is assumed to have a sinusoidal corruga- y front
tion with wavelength\. The contact surface ripple before

shock compression is assumed to be of the fafpy) /T x

=y cosky, wherek=2m/\ is the perturbation wave number.

Once the transmitted and reflected fronts start to move ahead FiG. 1. Perturbed interface separating two different fluids after
of the interface, they generate sound, entropy, and vorticityhe interaction with an incident shock. The corrugated transmitted
perturbations. We will assume very small perturbation valuegind reflected wave fronts are shown. For explanation of the sym-
for the different quantities, and use a linear theory descripbols, see the text.
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velocity field [10]. Initially, at t=0+, the shocks generate exponentsy, and y;), and the incident shock Mach number
tangential velocity profiles along the contact surface. On théM;), which determines the degree of compression suffered
side of fluid “a” the initial tangential velocity profile is by both fluids. By adequately changing these four parameters
5v§asin ky and on the side of fluidly” it is v, sinky. That ~ we could, in principle, pass continuously from a situation in
is, there is an initial circulation distributed along the materialwhich a shock is reflected to another one in which a rarefac-
interface. We defin@l’O:&va— c?vSa, which is indicated in tion is reflected, as a result of the “incident shock-interface”
Fig. 2(a) with the arrows corresponding to the tangential ve-interaction. In this work we will only study the shock re-
locities. Due to the sound waves that arrive to the contactiected situations. Typically, this amounts to considering situ-
surface from both sides, this circulation will change in time,ations in whichRy> 1 for equaly at both sides. For different
because of baroclinic effects, and arrive to an asymptotizalues of the fluid isentropic exponents, the conditions that
value which we calldl',, [6-9]. Meanwhile, the normal ve- must be satisfied in order to have a reflected shock or rar-
locity is also changing in time, adjusting itself to the instan-efaction will be a definite function dRy, M; andy,, yy [3.4].
taneous value of the circulation at the interface. The interacAs is already known, whenever a shock is reflected, the
tion between the shock fronts and the interface via the soundsymptotic rate of growth is usually a positive quantity. This
waves that reverberate in the space in between is responsibiieeans that the interface ripple will grow without inverting its
for the temporal evolution of the perturbations in the wholephase1-10. However, as has been seen in relatively recent
flow field. Asymptotically in time, the shock fronts will re- works [3,4,9, we could also have an interface phase inver-
gain their planar shape, the sound waves fluctuations woulgion, and still having a shock reflected, whBgp~ 1. This
have almost vanished, and there will be stationary velocitysituation has been called “indirect phase inversion” in Ref.
vorticity and entropy perturbation patterns at both sides of3]. This means that in between, we could be able to observe
the contact interface. The asymptotic rate of growth of thea zero asymptotic rate of growth at the interfgdé This
ripple at the interface is determined by an adequate averagmssibility, which has been calldteeze-oubf the perturba-

of the vorticity field at each side of the material surfacetion [11], has been predicted by Fraley in R¢L0], and
[7-10. We have four dimensionless parameters that are nestudied in some detail later by Mikaeli§hl], and addressed
essary to describe the instability evolution. They are: thdater on by Yang, Zhang, and Shaj@], and by Velikovich
initial density jumpRy=pao/ ppo, the fluids compressibilities [4,11]. The possibility of observing this type of perturbation
(which for ideal gases can be described by the isentropievolution was also confirmed numerically by Yaeial. [3],
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and also with independent analytic calculati¢ii®]. Fraley  dvy,~-0.071 17ukyy, and dvy,~ 0.089 98uiky,. The final
concluded that the situations in which freeze-out could occumterface circulatior{sI",,=~ 0.01863u;kiy) has the same sign
should haveRy<1.5. This prediction was confirmed later on as the initial circulatior(l'g~ 0.1236u;kiy), for the param-
by Mikaelian, who derived an approximate expression foreters chosen in this case. We show next the temporal evolu-
the growth rate, valid up to second ordeirf—1 (therefore,  tion of the normal velocity at the interface ripple in Figd®
his conclusions are approximately valid for relatively weaklt is seen that after some oscillatiofthe characteristic pe-
shock3 and derived an approximate formula that locatesriod is determined by the sound waves that reverberate at
points of freeze-out, under the assumption that the initiaboth sides of the contact surfaf®10]), the ripple attains a
density ratio at the interface equals unifg,=1) [11]. Mi- constant rate of growth, after the shock has moved some
kaelian also stressed the necessity of having different valuesavelengths away. The dashed line is the asymptotic normal
for the isentropic exponents at both sides of the interface, gelocity, also calculated with the algorithm developed in Ref.
result that is confirmed by our calculations. However, con-{9]. Its value is:év; =0.076 19ukiy. As the shock consid-
trary to the initial belief, there is no need to choose veryered here is quite strong, and one of the fluids is very com-
different or exotic gamma values in order to find freeze-outpressible, there is some finite time before the linear
The only practical restriction that we have found is that theasymptotic regime is achieved. Of course, for finite values of
fluids should have approximately similar pre-shock masshe interface ripple amplitude, the rate of growth will be later
densities. As discussed by Velikovi¢H], freeze-out of the modified because of nonlinear effects, and the growth will be
normal velocity perturbation is not a most rare occurrence. Ifeduced[8,12). Therefore, for a practical situation in which
we start with a given set of,, v,, M;, andRy>1 values, i, is not a negligible fraction of, the behavior shown in
such that a shock is reflected, and start decreasing the initifdig. 2 will be of limited validity in time. Anyway, we restrict
density ratio, we will continuously pass from the shock re-our discussion to situations in whigfy<\ and non-linear
flected case to the rarefaction reflected situation. Togethesffects can be safely ignored.
with this change, the phase of the interface ripple will also We show in Fig. 8a), the initial configuration of tangen-
get inverted at some intermediate density juRy and the tial velocities and shock and interface ripples, for a case in
asymptotic growth rate could then be negative Ry~1  which y,=1.8, %,=1.1,M;=5, as before, buR,=1. We have
[2—4]. Thus, at some specific value of the pre-shock densityeduced the density jump in order to find an indirect rate of
jump, the asymptotic growth rate equals zp4h It turns out  growth at the interface ripple. As can be seen from F{g),3
to be the case that, if we start with shock reflected situationthe quantity v%,~0.2294uky, has now the same sign as
and decrease the initial parameRy, freeze-out conditions &9 ~0.019 67ukyy,. Furthermore, we see that it &9,
will cluster aroundR,~ 1. To get a simple, qualitative, yet > 5v°b> 0, for this case. It is also seen that the transmitted
rigorous picture of the physics of freeze-out, it is better tofront has inverted its phase in this situation, as compared to
briefly discuss two opposite cases of non-freeze-out. One ithe case discussed above. The initial circulatiosl’
which the growth is positive and another one in which the~-0.2098u,k¢,) has changed sign with respect to the case
asymptotic growth at the interface shows indirect phase indiscussed before. In Figs(t§ and 3c) we show the tempo-
version. After that, we analyze in a qualitative way a freezera| evolution of the tangential velocities at the interface. The
out situation in an effort to grasp the underlying physics. asymptotic values of the contact surface tangential velocities
are: vy, ~0.096 72k and dvy,~—0.011 180k, which
give 8I',,~—-0.1079u;kin. The normal perturbation velocity
at the interface is shown in Fig(c8. The asymptotic value is

At first, let us consider an incident sho@klach number  sv”"~-0.011 36u;k¢. It is clear that the phase of the con-
M;=5) that travels inside a fluid with isentropic exponenttact surface corrugation has changed sign early during per-
v=1.1. The heavier fluid hag,=1.8 and the initial density turbation growth and therefore, the final asymptotic growth
ratio at the contact surface Ry=3. The transmitted and proceeds in the opposite direction as compared to the previ-
reflected shock fronts start to move away from the interfaceus case. Where is the reason for this anomalous behavior? It
at t=0+. In Fig. 2a) we show the deformed interface, the is impossible to give in simple mathematical terms a simple
corrugated shock fronts, and the tangential velocities aroundigebraic condition to be fulfilled, in such a way that the
t=0+. The tangential velocities have the value?sSa anomalous phase inversion could be easily predicted. This is
~-0.006 844u;kyq, and ﬁvgbz0.1168uikz/fo. With a linear  so, because it is the result of a subtle interaction between the
theory model like that of Refl6] (previous minor errors in interface perturbations and the sound pressure fluctuations
that reference have been corregietie temporal evolution coming from the shocks at each side of the contact surface.
of the magnitudes at the interface can be studied. In FigsThe interaction between interface and shock perturbations is
2(b) and Zc) we show the temporal evolution of the tangen- of non-local nature in time, a fact which unfortunately com-
tial velocities at both sides of the interface. The horizontalplicates the mathematical description in simpler terms. Even
axis is given as the distance traveled by the transmittedhore so, if the sound speeds at both sides are different, be-
shock in units of the contact surface perturbation wavecause the fluid with lesser sound speed will arrive much later
length. We see that both tangential velocity perturbations arto the asymptotic stage and hence, we have a mismatch of
rive to a constant asymptotic value. These asymptotic valuesignals at the contact surfa¢®0]. These effects are a con-
are indicated with dashed lines, and are calculated with theequence of the fluids compressibilities, as already recog-
method described in Ref9]. The asymptotic values are: nized by previous authoi#,5,10,11. We can get, however,

A. Non-freeze-out cases
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a qualitative understanding of the indirect phase inversionz=0.9901< 1. This means that the initial circulation is posi-
by looking at the initial tangential velocities. In fact, the tive (8I';>0). The subsequent interaction with the sound
initial ripples of the reflected and transmitted shock frontswaves does not modify the sign of this circulation and there-

are given by(1,3-5,1Q fore, the interface ripple does not change phase.
Let us now consider the case studied in Fig. 3. For the
o= (1 + ﬁ) Yo, (1) parameters of this situation, we ggfu;=~1.2648>1. This
Ui means that the transmitted shock front ripple has an inverted

phase with respect to the initial interface corrugatiant
3 Ug =0+). Then, the initial tangential velocity induced by the
Po=\1- JI Yo, ) transmitted front has the same sign as the tangential velocity
behind the reflected shock. Furthermore, the absolute values
from which the initial tangential velocities behind the corru- are such that the tangentia' Ve|ocity on side is “Stronger"
gated fronts can be calculat¢t,3,4: than that on sidel”. That is, the initial circulation is now
50&): (01— V) o, 3) negatiye(5F0< 0). The followipg in.teraction of this c.ircula-.
tion with the pressure gradient induced by the incoming
800 = — v 4) sound wavesfor t> 0) will make the final circulation remain
ya 1710 negative, in such a way that a negative normal growth is
In a case like the one studied in Fig. 2, the fluids and shoclbserved at the interface ripple. The natural question is then,
parameters are such thai<u. In fact, we getu/y, how much faster should the transmitted shock move com-
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pared to the incident shock, in order to stop the growth at theolution to Eq.(5). To make a qualitative introduction here,
interface, asymptotically in time. Two points are noted: first,we have chosen the same valuesvgf y,, andy, as before,
the requirementu,=u; will not give freeze-out, because and leaveRr, undetermined. When E5) is solved with the
oI'y>0 and the interaction with the sound waves does nomethod explained later, we g~ 1.157 9271... . Forthis
seem to be strong enough to reduce the growth to zero in thisrecision in the density jump, the perturbation normal veloc-
case. Second, the cases in whi&ly, = 5v§b would also not ity at the interface satisfiesv;”<1071% in units of u;ke.
conduct us to a freeze-out case, because, evéhiit0, its  Obviously, if we continued calculating more digits &g, we
value will not remain zero because of the baroclinic interacwould have obtained lower and lower bounds for the pertur-
tion with the pressure field of the sound waves. The exacbation velocity, approaching the zero value for the correct
amount by whichy, should exceed; in order to have freeze- combination of infinite digits inR,. For the purpose of the
out is determined by the interaction between the perturbadiscussion here, it is enough to sét;” less than a low
tions at the contact surface and those which are generated eough value. In Fig. (4) we show the initial tangential
the corrugated shock front®,10. In other words, there velocities at the interface and the corrugated shocks, where
should be a definite value for the raﬂ@zévga/évgb, such  the phase inversion of the transmitted front has been evi-
that if the parameteK, equals some critical valugl?, then  denced. In Figs. @) and 4c), we show the tangential ve-
freeze-out results. For values K different fromK, posi-  locities evolution as a function of the distance traveled by the
tive or negative growth would be the outcome. A quantitativetransmitted shock. In Fig.(d) we show the evolution of the
determination of®, in order to decide whether freeze-out normal velocity perturbation at the interface ripple. For the
will occur or not, is far from being simply written in terms of case discussed here, the initial tangential velocities on both
the initial parameters that describe the zero order flow.  sides of the interface are given lﬁﬁga% 0.1906u;kyg and
5v3b%0.0303. Later on, they are modified because of the
B. Freeze-out situation baroclinic interaction with the sound pressure field, and we
get the asymptotic tangential veIocitiés;‘:az 0.0722u;keg

We discuss now a situation which is almost near freeze; 805,~0.000 643 Tk, This makes a negative

out condmt_)ns.tStrlctIytﬁpe?kmg, to tstart ;hte dlscur?sul)g 'k;‘asymptotic circulation:él',,=-0.0716ukyp# 0, but zero
more precise terms, the freeze-out conditions shou symptotic normal velocity. There is no contradiction in this
sought by requiring the vanishing of the asymptotic normal

locit turbati t the interf To b ful result, as there is a vorticity field at both sides of the inter-
velocily perturbation at the interface. 10 be Successiul, We,qq \yhich is responsible for generating finite tangential ve-
must use an exact expression for the asymptotic rate

h hi . ; h cities at the contact surface. This means that, despite the
?melé g‘;gvg dsiiolngs%?lsg]\'/ ery convenient to use the exac act the interface ripple does not grow normally, the bulk of
SR the fluids show persistent and steady asymptotic velocity per-
. WS -R&Y, RF,-F, turbations, which are rotational in nature, as they are that
S = yR+ 1 t Ri1 -0 (5)  part of the velocity field which was generated by the corru-
gated shock fronts. For example, in the general case, the
where v is the asymptotic normal velocity at the interface normal velocity fluctuations behind the shock front can al-
ripple, R=p¢/ pps is the final density ratio at the contact sur- ways be decomposed in the forfh0]:
face, andrF,, represent the interaction of the corrugated in-
terface with the sound waves emitted by the deformed shock Suy(X%,Y,1) = 0PV(x,y, 1) + svlV(x,y), (6)
fronts. It is also seen that the quantitieg, can be thought
of as representing a weighted spatial average of the vorticit (pot) ; ; - :
perturt_aation field Ieft by the corrugated fronts in the bulk Ofifiver}gredivex to '?htehep'rrerggﬁgngleﬁg?;['ebdmf; ttr?ethrzvveeillggrlg{ting
the flu!ds[7,9]. In this Sense, we also speak of .thgm as reP54und waves. This part of the velocity field does change in
rets;e?tlng the asty rtr)ptotlcl etf'“fect Igf the bulk IV (irtllcmest 9:.1 th(Ttime, but gives no contribution to vorticity, as it is an irrota-
interface asymptotic evolution. For a completely irrotational : :
problem (which never occurs with corrugated shopkthe tional mode[4,10]. On the other hand, the second part, given

rot) - . ..
quantitiesF, , would be exactly equal to zero. This situation by 5U§< ', is s'teady. state contributidim a system of.ref-
is never realized in practice, for shock reflected cases. It ca(;F]renCe co-moving W'Fh the shocked con_ta_ct sud,amﬂ;ch
be used as an approximation for very weak shocks. Indeed©€S Not change in time. Furthermore, it is alw'a?yg (x
as has already been shown in Rdfs9], the bulk vorticity =0)=0. That is, the rotational part of .the vglocﬂy field al-
factors F,, are proportional to(Mi2—1)3 for very weak Ways vanls'hes at the cpntact surface rlpple, |r_1dependently of
shocks. This result would induce us to think that for very_th_e_ properties of the fluids orth_e shock intensity, because the
weak shocks, freezing-out conditions could be derived bynitial (t=0+) pressure fluctuations between the corrugated
requiring the vanishing of just the irrotational contribution of Shock fronts are zerff,3,7,9,1Q. Therefore, the asymptotic
Eq. (5). As will be seen later, this is not strictly correct and Velocity at the interface is the result of making: = andx
could be misleading, even for weak shocks. This means that0 in the above equation. T(hoet) freeze-out situations would
to correctly understand the peculiar phenomenon oforrespond to cases in whid "> (x=0,y,t—«)=0, which
asymptotic freeze-out, we must include the terms that resuhlso implies thaﬁv;pm)(xvﬁ 0,y,t—%)=0, because this a po-
from the shocks-interface interaction. In the following sec-tential contribution(it is always irrotational and becomes a
tions, we will develop the algorithm that allows us to find the divergence free field, asymptotically in time, because the
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density perturbations do not change in time, at large tjimes values of those magnitudes inside the fluids would be surely
However, as the vorticity is a conserved quantity for inviscidsmaller in a freeze-out case as compared to a non-freeze-out
fluids, it is clear that even in freeze-out conditions, the secease, but this would require a specific evaluation case by
ond [rotational contribution&vf(“m, in Eq. (6)], will remain  case. This persistency of the perturbations inside the fluids
different from zero forx# 0, and equal to the value gener- could also have deleterious effects, for example in inertial
ated by the corresponding fronts. This means that the fluidsonfinement fusiortICF), if another shock is launched after
would keep “revolving” at each side of the interface. In thisthe first one(assuming that the first shock has frozen out the
form, the fluids keep memory of the fact that the shock frontgperturbation growth at the interfacedt is clear that a deeper
were corrugated when they separated from each other, anthderstanding of freeze-out in the RM instability would be
that they compressed non-uniformly the different fluid ele-helpful not only because of its potential application in fields
ments, generating steady entropy and vorticity fluctuationdike ICF, but also because it will help to gain a better under-
along their way. In consequence, we could never speak of standing of the role of compressibility in general instability
proper “stabilization” of the perturbation field, because someevolution. To properly discuss these issues, we have orga-
energy will still remain in the fluids as rotational motion. The nized this work as follows: in Sec. Il, the basic equations for
effect of these perturbations would not be manifested as mdhe zero order flow and the perturbed quantities are pre-
tion in the normal direction, but rather in the form of vortices sented. In Sec. Il the method to determine the freeze-out
that persist indefinitely in time. It is only the normal velocity conditions is explained. The results of these calculations are
at the interface that vanishégsymptotically in timg On the  also shown in Sec. lll. A discussion is presented in Sec. IV
contrary, this does not happen to the normal and tangentiand the results obtained here are compared with those found
velocities in the bulk of the fluids. Of course, the absolutein previous works. A brief summary is presented in Sec. V.
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II. BASIC EQUATIONS Pof _ 1+e,2

In this section we define the basic magnitudes of the zero por L1+enz
order flow and the equations satisfied by the perturbed quan- .
tities. They are the necessary ingredients before the deriv2|:he sound speed behind the reflected shock can be calculated

tion of the freezing-out conditions is attempted. with

Cof Po1
y —=\1+z)—. (14)
A. Zero order quantities Cp1 Dbt

Referring to Fig. 1, and solving for the Rankine-Hugoniot
equations at the shock fronts3—13, it is easy to derive the
different magnitudes of interest in the compressed fluids. We
previously define the shock intensities, following Whitham
[15]. In fact, let p, be the initial pressure of both fluids,
before shock compression. If the pressure driving the inciAnalogously, the density compression across the transmitted
dent shock isp;, we define the incident shock intensity as front is
z=(p1—Po)/ Po- It is easy to see that the incident shock Mach
number is related to the shock intensity k=2y,(M? Pat _ 1+ e€az (16)
-1)/(w+1). The incident shock speed in the laboratory pao l+epz
frame is therefore:

(13

The reflected shock speed in the laboratory reference frame

U = Cpp V1 + €7, (15

The compressed sound speed is

wtl
1= oo “(2_%)4 " Gai = (14220 17)
Cao p. f,

Besides, it is not difficult to deduce the different quantities ‘

behind the front(a Subscript “1” indicates the magnitudes and the transmitted shock Speed in the |ab0rat0ry frame is
behind the incident shogk —
U= CaoV1 + €. (18)
Por _ 1+ e€mZ

: (8)  The contact surface velocity is
pro 1+ ez

%

= V(@ +2) 20, 9 | YaVl + €uz
Coo Pb1

It is not difficult to construct the final density ratio and the
where €y ,=(71)/2y,. The same magnitudes can be cal-ratio of compressed sound speeds at the interface:
culated for the flow behind the reflected and transmitted
shocks. It is necessary, then, to define the reflected and trans- R= Paf _ Pat Pbo Poi (20)
mitted shock intensities. Lgi; be the pressure between the Poi '

. . . Pao Pb1 Pbf
reflected and transmitted fronts. The reflected shock intensity
is: z.=(p;—py)/ p1, and the transmitted shock intensity is cal- e Co G
culated with:z,=(p;—pg)/ po. It is not difficult to see, because N= -2 = —afﬂ)—blNO, (21
of continuity of normal velocity and pressure at the contact Cot  Cao Coa Cor

surface, that, andz can be calculated once we specHy
Ya Yo, @nd the initial density jumfRy=p.o/ ppo- The two
necessary equations are

whereNy=Cao/ Cho=1 o/ (7aRo) is the ratio of the pre-shock
sound speeds at the interface.

z \/ (1+2z) pbo_\/ Yo yA B. Perturbation equations
V1 + €7, (1 +€nZ) pry YaRo V1 + ey In this section we will briefly review the equations that
(10) govern the perturbed flow between the reflected and trans-
mitted fronts. We follow essentially the calculations shown
in previous workg7,9]. The velocity, pressure, density, and
2=2+(1+2)z, ap TP 7.9 Y, P y

entropy are assumed to satisfy the usual conservation laws in
where €, ,=(y,+1)/27y,. The flow velocity behind the re- the space between the contact surface and the shocks:
flected shock, in a system fixed to the reflected front is given

by ‘9—&’;=—€ (po), (22

— (12

YoVl +enz aw o= . 1-
—+@w.V)v=--Vp, (23)
ot p

U170 =Cp
and the compression ratio is
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Js

3 KGnit = Fy COSH B, 34
L (@.9)s=0, (24) it = im €O (39

In this new system of coordinates, the interface has the co-

which express the conservation of mass, momentum, angfdinateé=0. The shock fronts, which move in thet vari-
entropy, respectively. We linearize the flow equations, as@P/es, are now fixed in the new coordinates. That is, the
suming that each quanti# can be decomposed &g+ 56, reflected shock coordlnate is given by: tahk B, =(u,
where gy, is the unperturbe¢zero ordey value, calculated in  +vi)/Cor Whereu,+uj is the velocity of the reflected shock
the previous section, and is the small fluctuation gener- Trelative to the moving contact surface. Therefgsg,is the
ated because the wave fronts are corrugated. We will alway$flected shock Mach number with respect to the compressed
assume thatp< ¢,. We assume that the corrugated inter-fluid “b”. Analogously, the transmitted shock moves in the
face has the dependence &ysand it is not difficult to see Negative direction with velocity & X which makes the trans-
that the pressure perturbations will also depend on the tarDitted shock coordinate in the new system to be given by:
gential coordinate like cdsy. Besides, the velocity compo- tanh6:=—p;=—(U—v;)/c,<0. The quantityu—v; is the
nents satisfy:év,~ cosky and dv,~sinky. It is convenient transmitted shock speed relative to the material interface.
to work with dimensionless perturbed quantities. We definelhe quantitys, is the transmitted shock Mach number with

(the subindex tn” refers either to &” or “b”): respect to the fluid between the transmitted shock and con-
tact surface.
Pm(X, Y1) = prmiCmili (Kidio) SP(X, t)cosky, (25 The wave equation for the pressure perturbations in both
fluids can be rewritten in the following form:
S0ym(X,Y,1) = Ui(Kiho) SUm(x, ) cOsky, (26) , Py 0B 90y
m 0,,',2 + ar + rmépm_ 960, ) (35)
Suym(X,Y,1) = Ui(Kehp) Su (X, t)sinky. (27) m m m
where the auxiliary functiordl,, is given by
Spm(X,Y, 1) = Ui(Kiho) Spm(x, t)cosky. (28) 108y 6
Thanks to the entropy conservation along the fluid particles m rm 66m

path[Eq. (24) abovd, the density perturbations are related to

the pressure perturbations by To get the exact solution of the wave equation, it is better to

work with the Laplace transform of the perturbed quantities,

adp _ , ddp as suggested by ZaidglL6]. We define Laplace transforms
o Cmt (29 in the variabler,, with capital letters, for any perturbed quan-
tity 8¢, as
On the other hand, it is easy to derive the expression for the o
vorticity perturbations: 5P (0 S) = f ST 1y Sy €S mdlr . (37)
0
Swm(X,y) = nyn;(;’y’t) _ 90Xy, _ [551};1()('0 Laplace transforming the wave equatidys.(35) and(36)],
N X we deduce, after some long algeld&, that the Laplace
. . function of the pressure perturbations can be cast in a very
* kzmm(x,t)]sm ky= gn(x)sinky. (300 yseful form. We further defing,,=sinhg,, and obtain
After linearizing the equations of motion, we obtain the fol- P, (6,,S,) = Frna(Gm ~ Om) + Frrp(Qm + am). (39)
lowing wave equations for the perturbations in pressure and e coshqgm,

velocity (we omit the subscriptr” for simplicity): The Laplace transform of the pressure derivaidljg can be

P 2 written in the form:

- 5+6p=0, (3D

aket)®  a(kx) OLn(6mySm) = Fra (G = Om) = Fr2(Gm + 0. (39)

2 P The functionsF, , have yet to be determined from the
_&J _ ﬂ +8u=g(x) (32) boundary conditions at the shock fronts and at the contact
dket)?  a(kx)? ' surface. As for their physical meaning, it can be shown, by

means of the model developed by FraJ&g], that the func-
P R dg(x) tion F,; stands for the sound waves that leave the shock
—— -5 +tdv=- . 33 i i
okt a(kx)? v dx (33 surface toward the interface. The functibp, represents the

sound waves that travel from the contact surface toward the
It has been shown in previous works that the wave equatioforresponding shock front. We also note that the arguments
for the pressure perturbations can be easily solved by makingf these functions are displaced if.f his characteristic is a

a variable change, suggested by Zai(é)7,9,18: consequence of two facts: at first, there is a material surface
that reflects the waves toward the shocks, that is, the contact
kx=rsinh6,, surface itself, and second, we will always have the Doppler
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shift at the fronts, as they are moving with a finite velocity in ) 11

the frame of reference fixed to the material interfft@]. It ap(0) = appsinhg + sinhq’ (41)
is clear to foresee that these terms are of the utmost impor-

tance if we want to understand the instability evolution. ThisThe quantities,;o and ay,;; are given by

is so, because they are the mathematical structures respon-

sible for describing the interaction between the fronts and the _h-1 42
material surface. To neglect the shifts inside them would be @10~ 26, ' (42
equivalent to erasing from the problem the nicest character-

istic of this instability: the sonic interaction that exists be- g h+1

tween fronts and contact surface singe0+. In fact, not Ay =— —— ==~ Pot (43

taking the shifts into account could be only justified when 1 ‘,33 2 po’

the shocks are very, very weak, because in that case, the .

fronts separate almost immediately from the unstable inter\—"’here the parametdr, is [13]

face. They would travel at almost the speed of sound and, pi-py (dV

thus, shocks and interface decouple very soon. The perturba- h, = #<—) , (44)
RH

tions emitted from the interface would take too long to arrive Vb1~ Vor \ dp

to the shocks and come back to the interface to repeat .ﬂme derivative is taken along the reflected shock Rankine-
process. However, .th.'$ IS no '°"!99r true for shocks Of. finit ugoniot curve in the final stat&=1/p is the specific vol-
intensity. The possibility of having freeze-out at the inter- '

face, as discussed in Sec. I, comes from the fact that
Fm12(0x 6) are important and they are not negligible in the
general case. They are not only necessary to follow the sonic sinh é.
interaction, but also to describe the vorticity generation in app(Q) = = 6 .
the bulk. The details of the interaction between shocks and

interface, which would help to explain the asymptotic freezeyyhere 5U0b is the initial tangential velocity behind the re-
out at the contact surface, are unfortunately hidden in th@ected front, defined in Eq(3). The boundary condition
cumbersome mathematical structurefgf; ». In the follow- \yitten in Eq.(40) can be recast in terms of the functions
ing sections we will learn how to deal with them and obtain Fp1 » by means of Eqg38) and(39). After some algebra, we

Tﬁe functionay,y(q) is

YPsinhq’ 49

the desired conditions for freeze-out. arrive at
&%, sinh 6 “(q+ 6
C. Boundary conditions Fpa(q) = — Uyb — r - 77f_(q ) Foa(q+ 26,),
sinbg+ 67 (+6) 7+ 6)
It is convenient to briefly review the boundary conditions (46)

at the shock fronts and at the material interface. This will

allow us to construct the reverberating sound wave functiongshere we have used the function’ defined by
Fm1,2 and solve the perturbation problem. In the next section,

these results will be used to determine the exact conditions + . ap(q)

that must be satisfied to have perturbation freeze-out at the 7,(q) = coshd q 1

contact surface.

(47)

1. Boundary conditions at the reflected shock front 2. Boundary conditions at the transmitted shock front

_ ) L _ ) We can manage the boundary conditions at the transmit-
Following Richtmyer[1], it is possible to arrive at an (a4 front in the same way as has been done with the reflected
equation that involves the partial derivatives of the pressurgpqock. We get the following corresponding equatiare do

with respect to time and normal coordinate, at each shoclqy append the subscripa™ to the variableq in this para-
front. We will not repeat those calculations here, but merelygraph to simplify the notation

write the final results, as they will be useful for the discus-

sion that follows. After expressing that equation in the coor- SL(Q) = ara1(0) OP(Q) + asp(0). (48)
dinatesr, 6 and taking its Laplace transform, we arrive at an

equation that relates the perturbed quantities at the shockVe have definedP,= oP,(6;, sinhq) and similarly withsL,.
5P,(s) and &L,(s). We omit the subscriptt” in the variable ~ The auxiliary functionay, is

gy in this paragraph, and indicate the functions pertaining to

thg reflected shock with a subscript""The bound_ary con- @y (Q) = @y SiNh g + ‘_J‘all , (49)
dition at the shock front can be put in the following form: sinhq
where the quantities,;q and a1 are
8L,(0) = apa(A)8P;(0) + (@), (40) ) )
ht - 1 (50)
Aa10= =~
where 6P, (q) = 8Py(6;, sinhqp,) and analogously withsL,: a0~ o
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FIG. 5. Curves of freeze-out for the parameters shown. The FIG. 6. Same as Fig. 5, but far,=1.5.
isentropic exponent of fluidd” is always y,=1.8.
RNSP,(x=0,t) = py(x=10,1), (56)
_ Bt ht + 1 pyy
11— l 2 2 I (51) R R
B Pao 9ODa _ 9Py (57)
with h; a parameter defined at the transmitted shock Rankine- X X

Hugoniot curve{13]: To get useful relationships in terms of the functidrsit

Pr—po [dV is convenient to change variables fromt to r, 6 on each
ht:ﬁ o) (52 fluid, separately. Besides, we note thgtx=0)=kc,t=r7,
a0~ Var\ GP/RrH andry(x=0)=kg,t = 7,. If we further make a Laplace trans-
The functiona,,(q) is form of Eqgs.(56) and (57), we must keep in mind that the
. Laplace variables,=sinhq,, ands,=sinhq,, at each side of
0 M (53) the interface should be related lsykc,t=s.kc,it. That is,
Yasinhq Ns,=s,. After some algebra, and using Eq88) and (39)
valuated ak=6=0, we arrive at the following relationships:

a(Q) == dv

Similarly, as we have done with the reflected front, we car®

recast the transmitted shock boundary condition in terms of 2Fpo(0p) = (A = D)F 45(qa)
Fa1,2: Fa2(qa) = A+1 ’ (58)
&0 sinh 6, 7 (q- 6)
Fap(@) = ———*—— - Fai(d-26), -
i sinhq-6)n (a-6) 7m(q-6) = ! Foy(Gy) = 2AF 41(d,) + (A = 1)Fpy(qp) ' (59
(54) A+1

where A =R coshq,/coshqg,.

where the auxiliary functionsy;(q) are given by Furthermore, Eqs(46). (54, (58, and (59) can be re-

N az1(0) duced to the system:
@)= s, (55
coshq PaaFa1(da) + Fua(Gp) = a1 + PaoFar(da—26),  (60)
Up to now, we have arrived at two equatiofisgs. (46)
and (54)] that relate four unknown functiorf§,; 5(q,) and Fa1(0a) + Pp3Fu2(G) = o1 + ProFua(do +26,).  (61)

Fp1,2(dp)]. We need two additional equations to close thetpe auxiliary functionsp,; » 5 are defined by
problem. Furthermore, it is noted that the variabtpsre o

different on each side of the contact surface. The task of _A+1 5v8asinh 6
o o . ) . 1= - ,
finding the additional pair of equations and the relation be- a 2 sinh(g,— 6) 7, (0a— 6)
tweenq, andq is left for the next paragraph, when we look
at the boundary conditions at the material interface. b= A+1 7 (Ga = 6)

3. Boundary conditions at the contact surface az 2 sinh(g,— 6) 7, (da— 6) '

At the boundary that separates both fluids, we require, as
usual, the continuity of pressure and normal acceleration per- b= 1-A
turbations[1,3,4, BT 9 v
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A+1 vd, sinh 6,

Svg, = RovY, ,RRa-Fy

= s 5 = 69
P17 38 sty + )75 (G 0 TR+l R+1 9
. It can be seen, according to R¢®], that the sonic param-
oy =~ A+1 7, (dp + 6;) etersF,, can be rewritten as averages of the vorticity pro-
b27 oA sinh(gy+ 6,) 7, (Qp + 6;) ' files at both sides of the interface, as left by the corrugated

fronts in the interior of the fluids. In fact, as has been seen in
A1 Refs.[6,7], the vorticity generated at either side of the inter-
Gpz= —— face can be formally written as

2A
_ _ _ _ Swp(X,Y) = gy(X)SiNKy = Qp( Do)t 0=x(u, +0) SINKY,
We see that the sonic functions on the right-hand sides of

Eqgs.(60) and(61) are shifted, due to the Doppler shift at the (70)
shock fronts. This characteristic certainly complicates the ] ~ )
mathematical procedure to get an analytically closed solu-  @a(X,Y) = a(X)SinKy = Q() g=x(u-v)SINKY, (71)

tion. Nevertheless, as has been shown in Ref. we can

always get the exact growth rate by means of an adequatehere the quantitie€l,, are

iteration procedure which converges very fast. __ 1+ Bihy)v; (72)
. . o T 2By’
4. Asymptotic perturbation velocities at
the rippled contact surface 1+8h —0
0= LHAM@L =) 73

Our next task is to derive an expression for the asymptotic 2B:(u; +v;)

normal perturbed velocity at=0. This can be done, noting

that the time integral of the linearized tangential momentunf 'O the last equations, it is recognized that the vorticity is

equation fromt=0+ up tot=c, at both sides of the interface, generated ax at the timet=ty(x) at which the shock arrives

gives us to that point. The.contlnwty _of tangential ve_Iouty across the
corrugated front is responsible for generating the rotational

R(5v§,°a— 503%) = (5U;Cb‘ 503%), (62) part qf the_velocity field Which makes up the vortic_ity field

described in the above equations. After some additional al-

where5v§,°m is the asymptotic value of the tangential velocity gebra(explained in Refs[7,9]), the sonic parametefs, and

at x=0. Furthermore, we also have the following relation- F, can be seen to be equal to the following spatial averages
ships, as can be deduced from the definitions of the functionsf the vorticity field:
F from EQs.(38) and(39) [9]:

=—=Q,8inh 6,6P(s; = — sinh§,), (74)

807 = Frp(0m=0) = Fru(dn=0), (63
Lo i F, = Q, sinh 6, 6P, (s, = sinh4,). (75)
5v§,°m— 5v§m: Fro(0m=0) + Fa(gm=0), (64) Whatever representation we choose to deal Wih, they

have to be calculated with the aid of the functiofg; »
which describe the traveling pressure fluctuations. But to get
them, we must solve the functional equation system of Egs.
(60) and (61). The details of the procedure to get the exact
solution of those equations has been explained in F&f.
and will not be repeated here. We just remind that the pro-
Fop=—8v + dug, (66)  cess is an iteration sequence which gives us improved values

of the sonic functiond with increasing accuracy. We
Thanks to Eqs(46), (54), and(62)66), we get the expres- oy review the very bargilézsteps. In fact, E¢80) and (61)
sions for the parametefs, and Fy;: ’

can be rewritten as

where m can be either & or “b.” We further define the
following quantities:

Fa=dv] + vy, (65)

F=Rdy+TF, (76)

where F=(F41(9.),Fp2(ap)), and the matriceR and T are
(67)  given by

~ (— 20-DI(A+1)?  4AI(A+1)? ) n
T\ 4AAA+1)2 2AA - D)/(A +1)?

-1
Fa:[1+4( S % 1+ gy } [0, 2F (- 2],

1
Fb:[l G “)(1 +Bhy)” ] [609y— 2F(26)].

U1~
-26,D,
(68) TzR.<¢a2e 0 )

. . . © - . 0 ¢b2620rDb '
Finally, adding and substracting;” in Eq. (62), we arrive
after some simple manipulation to an expression for then the last matrix, the exponents are to be understood as
growth rate at the interface, already presented in(&yg. traslation operators, that act on the functions to their right

(78)
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evaluating them at a shifted value, that &2%°<[F,;(q,)] value of 6B and so on. The process does converge quite fast
=F,1(q,—26,), and similarly for the variablely" (whereD,  and we achieve enough digits of precision with few iteration
=d/dqg,). Equation (76) can be solved by iteration by a steps. As the precision in the determinationRgfincreases,
proper choice of the guess function. This is explained inthe value ofév;” is decreased by many orders of magnitude
some detail in Ref[9]. We quote here the iteration chain: after several iteration steps, approaching the condition for
] — = [n-1] freeze-out:5v;"=0. . _

Fr=50+TF ' (79) We write here thenth iteration step. The system of equa-

iteration, are given by9] sity jump is
F[O](q )= Pa1 ~ Po1(Paz — Pa2) (80) 4 \/ﬂ@ - \/ Yo i
P2 — (s — ) ez — b V1+ ez (1 +e€z™) poa YRV + €
FL = o1~ doaFb3 () + hooFb)(Gp + 26).  (8D) A"=z+(1+2)7",
It has been shown that the iteration process defined by Egs. P ) (85)

(79—81) give very precise values for the functiofg, »,
and hence, a highly accurate determination of the rate ofyhere sB"™1! is calculated with

growth Sv;” [9]. . }
R[n HFE] 1] _ FEn 1]
R4

In Fig. 5 we show slices of the functioRy=Ry(va, v, M),

In this section we calculate the points, in the space ofor which we should expect freeze-out. The value chosen for
pre-shock parameters, for which we can find asymptotiche isentropic exponent of the heavier fluidjig=1.8. That
freeze-out of the normal ripple velocity. The idea is to set theof the lighter fluid(+y,) is varied between 1.1 and 1.7 and the
value of Eq.(5) [or Eq.(69)] to zero and solve for the initial incident shock Mach numbéM,) is varied between 1 and 5.
density jump by iteration. We rewrite the expression thatin Fig. 6 we show the same function foy,=5/3, with
gives the asymptotic normal velocity from E(), in the  1.05<y,<1.4. We see that the values of the initial density
form: ratio at which freeze-out is observed are very riegr1. We

w_ have not found freeze-out for larger values Rf [10,11].
OV = Oirroy + OB (82) This is certainly related to the fact evidenced in Sec. I: to be
where near freezing-out conditions, the transmitted shock speed
should be higher than the incident shock velocity to allow for
83) the tangential velocity on the heavier side to have the same
sign as the tangential velocity on the lighter side. This seems
to be only achievable for fluids of nearly equal densities, at
least for the case in which a shock is reflected. We also see
that, for the parameters range studied here, the density ratio
RF,-F, at which freeze-out is expected, slightly increases as the in-
:W (84) cident shock Mach number increases and the lighter fluid
becomes more compressible. We could not find freeze-out
is the contribution from the vorticity deposited in the interior interchanging the values of at both sides of the interface.
of both fluids(or equivalently, it is the asymptotic effect of That is, the fluid in which the transmitted shock travels
the sound wave reverberations that took place during thehould have a larger isentropic exponent than the other fluid
compressible phase:<0t<«) [5,7,9. The idea is to calcu- (the “incident” fluid). Otherwise, the speed of the transmitted
late sv;” with a first guess for the density jump, which we front cannot be higher than the incident shock speed, and the
choose:Rgo]zl. With this initial guess value d®, we calcu-  Circulation at the interface could not change the sign, a nec-
late the corresponding value @B% according to the defi- €ssary condition for freeze-out as discussed before. In fact, if
nitions of the previous section. The next step is to rewrite thave interchange the values gf(making y,< y,), we cannot
equations that define the transmitted and reflected shock ifave a reflected shock, because the density ratio is almost
tensities[Egs.(10) and(11)], but allowing now forR, to be  unity. That is, forRy~ 1, Eq.(85) does not have a real solu-
another unknown. Therefore, E¢9) must be added as an tion for y,<, [3]. In the next section we discuss the results
additional equation, as we will have a new set of three unobtained and compare them with previously reported freeze-
knowns: 2", ZY, andR!. Once we solve for them, we go Out situations.
again to Eq(82) and calculate the new value 6B*, using
the iterated new valuét%l]. The new value ofB is used to
calculate new values for the shock intensities and the density In this section we will discuss the results obtained with
ratio, which in turn are used to calculate the following newthe method outlined in the previous paragraphs. It is shown,

S =

(86)
IIl. CALCULATION OF FREEZE-OUT CONDITIONS

w8, - R8O,
jrrot = R+ 1

is the irrotational contribution to the ripple asymptotic veloc-
ity and

IV. DISCUSSION
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based on the cases discussed in Sec. I, that we can get amntinuous influence of the pressure field radiated by the
other useful picture of freeze-out. As mentioned in Sec. |, itshock waves, which arrive with some delay to the interface.
turns out that freeze-out can be thought of as the result of alhese waves refract there, altering the kinematics of the sur-
adequate balance between the tangential velocities generatite ripple, to arrive at the shock some time later, and repeat
at the contact surface, at0+. Accordingly, there should the process. Until the shocks are some wavelengths away
exist a critical value for the rati&,= 5v3a/ 5v3b, such that, from the contact interface, the contact surface ripple will
when K, reaches that specific value, freeze-out would beoscillate in damped fashion to stop asymptotically.
observed. FoiK, above or below such critical value, non-  We present here the conditions for freeze-out in a slightly
zero growth of either sign would occur. After showing this, different, but also convenient way. As discussed in Sec. I,
the accuracy of a weak shock approximation to freeze-out ithere should be a relationship betvveé_l‘l;,Sl and 503b at the
discussed. Finally, previously reported cases of freeze-ouwxact point of freeze-out. To stress this fact, we define the

are studied with some detail. parameter:
o
—_ ya
A. Critical value of &3,/ &v)), Ko= 500y (87)

As we have seen in Sec. |, depending on the relative VaIAs we have seen in Sec. |, we need that both tangential

ues of the transmitted and incident shock speeds, we CalL|ocities have the same sign. That is, we must hiye

change the phase of the transmitted shock with respect to th:ero for some characteristic valu€®>0. For Ka< K the
pre-shock ripple at the interface. Above some minimum 0 . 0~""0

value of the ratia/u;, we would be able to see an indirect growth of the ripple should be in the positive direction. For
1

fo . . . .
: , ; i Ko>
phase inversion of the interface ripple, as had been preVLI-<0 Ko, we should see an indirect phase inversion of the

; o interface and hence, growth in the negative direction. Our
ously found in Ref[3]. Therefore, for some specific value of task is to show that this is indeed the case.

u./u; we could expect zero asymptotic growth. That this is After some lengthy algebra, we can rewrite the param-

actually feasible has been demonstrated in the previous seg: ~ . . .
tions and it has been shown that there is a continuum o%rerﬁ':al( 26) andFyy(26) in the following, more suitable

values of the four dimensionless parameters at which this
effect_ is possible. We could ideally think of the region of Fai(-26) =0a1503a+0b151,3b,
freezing-out as a hypersurface of the formR,
=Ry(va» ¥, M), as discussed in Ref3]. Unfortunately, it is
not possible to show a simple closed formula that defines this
hypersurface. Due to the complexity of the procedure folawhere the quantities,; , and oy, , can be obtained with an
lowed to identify the freeze-out zones, it is not evident tojterative process from Eqs79)~81). The exact form of the
foresee whether such a surface exhibits interesting topologiecurrence relationships necessary to obtain the four quanti-
cal features or not. For example, it could be possible that thisies o) 5, 0,3 » is not strictly necessary right now, in order to
surface showed kinks or folds, or that there could be evefollow the qualitative discussion of this section. We should
unconnected islands of freeze-out in the parameter space. fibte, however, that instead of dealing with a functional equa-
this work we have only found freeze-out regions that clustetion for the functionsF,; andF,,, we could express the bulk
around theRy,~1 region. The only way to rule in/out the term &B [Eq. (84)] in terms of thes quantities mentioned
possibility of those fascinating properties, would be an ex-above. The interested reader could work out the correspond-
haustive mapping of the whole parameter space using thiag new functional equations far,,; , without any big diffi-
algorithm presented in the previous section. This task is begulties. As our interest here is only to reinterpret the physics
yond the scope of the present work and is left for futurebehind the phenomenon of freeze-out, we will only work
research. Presented in this way, the reason for freeze-oufith Eq. (88) above. In fact, inserting the shock functions
seems to be hidden in a subtle and precise tuning of twinto the expression for the bulk vorticity term in E§2), we
zero-order speeds, which can be selected by proper choice afrive at
the four parameters of the problem. Once the exact point of
freeze-out has been chosen, the asymptotic normal velocity 12,-1 22,0, 22401
vanishes for all perturbation wavelengths. That is, this is not ol RZy,-1 Z,-1 R(Z,-1)

. . . . . . Kh= —ya
a kind of selective stabilization which holds above certain 07 5,0
threshold value for the wave number, as is usual in instabili- yb
ties driven by gravityRayleigh-Taylor instability RTI)], or

Fpo(26,) = 0a25v3a+ 0'b2503b, (89

_ ZZaO'al + ZZbaaz
Z,-1 R(Z,-1)

shear velocity [Kelvin-Helmholtz instability (KHI)], and Sv;
acted on by some other mechanism as surface tension or ~0
.. . . . . . R+1 ov b
dissipative processes like viscosity, thermal conduction or + Y ,
ablation(as is commonly found in ICF environmen{$,17]. R (Z.- 1){1 _ 240w 22405
a

There is no dissipative physics here and the fluids in which Z.-1 R(Zy-1)

the shocks are traveling are taken to be ideal gases. The only (89)
apparent mechanism that drives the surface ripple toward

freezing-out is the “push and pull” effect, provided by the where the quantitieZ, , are taken from Eqg67) and(68):

026305-13



J. G. WOUCHUK AND K. NISHIHARA PHYSICAL REVIEW E70, 026305(2004)

4(u, — v; -1 Tr
Za: |:l +M(l +Btht)_l:| ,
Uj 6 | a: v, =187 =11 a
b: vy =187 =13
AU, +v; 1 5 et e
Zb: |:1+ ( r U|)(1+Brhr)_1:| . (90) Y, =187, =15
U1~ Uj 1Y, =187, =17

K 4
Equation(89) above is the same as E(9), and has the
same information regarding instability growth at the material
surface. However, some immediate, more apparent conclu-
sions can be drawn from E¢B9). At first, it is clear that, if

we requiredv; =0, the quantityK, should have a definite
valuer)O, which is the first term on the right-hand side of Eq. 1 15 2 25 3 35 4 45 5

(89). For Ko<K, we would get positive growth and for eident shock Mach numoer

Ko>KE, we would get negative values of the asymptotic ~ FIG. 7. Curves(solid) of the parameteK® in freeze-outEq.
growth. It is also clear that the conditid,= KBO could be (89)], as a function of the incident Mach numbév,), for the
used instead of Eq69), as the equation used to find freeze- parameters shown. The dashed lines are calculated with the ap-
out. This would amount to changing the structure of the it-proximate valuek§"* as discussed in E¢92).

eration process described in E§5). The results of doing it

are exactly the same as those obtained by solving(®9). 5,9 > 59 seems to be a necessary condition for freeze-out.
and therefore, nothing essentially new is gained, at least from

the operational point of view. As a consequence, this strategy

will not be used to re-derive the freezing—out conditions B. Weak shock approximation in the search of freeze-out

quantitatively, and the discussion will only remain at the
qualitative level. The usefulness of presenting @B§) is that Whe'n we IOOk. at Eq(82) we see that the r.ate qf grovyth
t the interface is composed by two terms: an irrotational

it actually confirms our previous picture of freeze-out, as ha oo - .
been thoroughly discussed in Sec. I. That is, there should b%ontnbunon (8virrey), and a .bUIk gqntr|but|9n which s
enough vorticity on one side of the interfagte fluid with presses the fact that there is vorticity continuously distrib-

larger isentropic exponensuch that an indirect phase inver- ‘!ted_at both sides of the mterfa@é—lo,la. This vorticity

sion is induced. However, at freeze-out, the phase inversio eldis t_he memory of the previously cqrrugated shack fronts
is never complete, because the interface stops growing som: at emltted. sound pressure perturbations and g_enerated sta-
time later. |f508a/ sv° has the correct value, the subsequentt'onary profiles of vorticity and entropy fluctuations along

“ush-pull” effect oty?he incoming sound waves will not be their way. Making the bulk term in each side of the interface

strong enough to force the interface growing in either direc-_StrICtIy equal to zergsB=0) would be actually equivalent to

tion, and hence the interface ripple would stop for large!dnOring the role of the corrugated shock waves afted+
times. It will, perhaps, grow in the negative direction for a ©" {0 assuming that the fronts that separated away from the
while and stop growing asymptotically. If the rati¢, has interface were of an isentropic nature. This last possibility

not the correct value, then depending on which side the targould be certainly the case if those fronts were rarefaction
gential velocity is the largest, the incoming sound waves willfans €xpanding away from the contact surface, as discussed

induce growth toward the side privileged by the differencePY Velikovich[4]. Indeed, his symmetrical Riemann problem
Ko—K®. It can be seen, after some long and tedious but no:LDr the rarefactions escaping away would actually perfectly
difficult algebra, that the quantitie&,o,; andZ,oy, are neg- it this idealized situation, because in this case it would be
ligible for very weak shocks. Then, it is tempting to simplify Fa=F»=0 exactly, and not merely as an approximation. In
the expression foK'® above with just the first fraction in the he rarefaction reflected RM instability we find, in fact, a
numerator of the first term in Eq89). That is, we could situation in which one of the bulk parameters is exactly zero:

define an approximate expression for the threshold value df'® On€ pertaining to the expanding fluid, between the con-

Ko: tact surface and the rarefaction trailing eddes,18. How-
ever, inside the fluid compressed by the transmitted shock we
approx_ L Zp=1 would still have the parametér, # 0. This is consequence of
Ko™ = E?—l (99) the fact that rarefaction fans are isentropic and hence

entropy/vorticity preserving, while corrugated shocks are
In Fig. 7 we study the values of the exact quanl{f& andits not. The conclusion is apparent: whenever we have a non-
approximate estimatiorKP""™ for the casesy,=1.8 and isentropic corrugated front which escapes away from the in-
1.1<y,<1.7 for 1=M;=<5, as used in Fig. 5. The solid line terface, we must expect entropy and vorticity perturbations
is the exact value for the velocity ratigq. (89)] and the  which will affect the asymptotic growth at the interface at a
dashed lines are the values given by the approximate exprekter time. These vorticity fluctuations cannot arrive at the
sion [Eq. (91)]. We see that except at very high compres-interface, as they are frozen to the fluid elements at the po-
sions, the approximate expression does a good job in predicsition where that vorticity has been created. Therefore, the
ing the critical velocity ratio at freeze-out. An obvious contact surface ripple has no way “to know” about them
conclusion from the results shown in Fig. 7 is the fact thatimmediately and adjust its circulation to the evolving veloc-
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ity field in the bulk. The only way to adjust the velocity
values at both sides of the interface and make them compat-
ible with the vorticity field on each fluid is by means of the
sound waves emitted by the fronts in the interval of time
0<t<. Therefore, there is no contradiction in the “dual”
interpretation we have assigned to the paraméigandF,,.
They can be seen as the dynamical effect of the sound wave
pressure field during the period B2t<<«, and also as the
asymptotic manifestation of that interaction in the form of a
vorticity field at both sides of the interface for». The
space integral of such vorticity fie[dor example, either Eq.
(74) or (75)] has the correct value to ensure that the final
asymptotic velocity field has consistently evolved from the
initial circulation deposited at the interface to its final value.
It is clear that the values afl'y and 61", must be consistent
with any vorticity/velocity perturbation field in the bulk, asis  FIG. 8. Comparison of the curves predicted for freeze-out with
clearly required by Eqg65), (66), (74), and(75). The only  the complete Eq(69) and the irrotational approximation given by
way to make the smooth transition from that initial circula- EQ. (92).

tion &= dvyy,— dvy, to the corresponding asymptotic growth

Eq.(69)

pre-shock density jump

I . |

4.5 5

P R

4

Lol
3 3.5

incident shock Mach number

2.5

dvi is to allow for the action of the early sound waves, 8v9,— RwY,
which baroclinically would change the velocities at the con- Wirrot = —hL =0. (92)

tact surface. But these waves must come from somewhere

ahead of the contact surface. In fact, that job can be donﬁ- must be stressed that E(2) has no information of the
either with a pair of shocks or a pair of rarefaction fans, O ulk vorticity, or in other words, no information of the

vvfitht_a ShOthﬁn?.a ,{rﬁrEfaCtiqu.’?’Iqh.m the doul?jlle rag_ shock-interface interaction through the multiple reverbera-
etac '%” .Caif fa4 IS, n N Symrge rica |_eman|n proh em .'Si' tions, giving us limited physical information of the instability
giliﬁfatigz 5Fe .[trgr;stfofmsigur;t tgvﬁge:s]ﬁftt;itsrv;far'nlua evolution when vorticity production could be important
without ene?r;ltin an vort%cit in the byu[llg =F,=0) Tﬁé (compressible fluids and/or strong shockdsing Eq.(92)
. generating any vorticity a= b= beyond its reduced limit of validity is certainly not justified
final velocity field W'll be, in this case, exactly |rrotat|0.na|. by accidental or coincidental partial agreements with the ex-
On the other hanq, in the shock cdeein the case of ha'vmg act solution at any higher shock intensities. In Fig. 8 we
only one rarefaction reflectgdhe sound waves that arrive to ¢, 0.+ the results deduced from the last equation, for a par-
the interface, alter the the initial circulation at the interfaceyc|ar case:y,=1.8 andy,=1.1. The incident shock Mach
and bring it to its final value in a way that is consistent with .\ .1 -is varied in the intervald M. <5. We also show the

.y . . | = .
the conditions expresksed Tathematl_cally n E(@é)—(k?S), corresponding curve calculated exactly with the bulk contri-
(74, .a.nd(75). As we know rom previous work?,9], t €S€ pution [Egs. (85) and (86)]. The agreement is reasonably
conditions are necessary requirements that must be fulfilleg,q ¢or quite low compressions but it worsens for moderate

to ensure the boundedness of the asymptotic velocity flucg, gtrong shocks. In Fig. 9 we show the actual growth veloc-
tuations very far from the contact surfa¢that is, at|x|

—o0), As we are concentrating here on the shock case, we
leave the rarefaction reflected situation for future work. A
natural question to be asked is then: is it possible to deal with
another more simple equation that defines freeze-out, which
does not need to deal with the functional equations system
defined in Eqs(79—(81)? That is, a simplified expression
which can neglect the bulk vorticity term, in some range of
the physical variables that define the problem? According to
our knowledge, this can be done exactly, just by requiring the
vanishing of vi,; in those cases in which we have no
shocks. But this is not the case discussed here. However, as
can be seen from simple inspection in EG&) and(73), the
bulk vorticity parameter§), ,,, are quantities of second order
in the shock intensityz; for very weak shockg7,9]. This
means that we could roughly neglect the tefin Eq. (82),

as a first approximation, and compare the approximate re-
sults with the exact procedure described before. That is, we
look for the set of points in the space of initial parameters,

0.03

normal perturbation velocity
Y, =18, v, =11, M =5 R= 1.34203057....

0.02

0.01

dimensionless velocity

-0.01 {

I I N AT A
0 0.5 1 1.5 2 25 3

xt/x

-0.02

for which the following equation holds, together with the
conditions to have a reflected shojgkgs. (10) and (11)]:

FIG. 9. Exact temporal evolution and asymptotic value for the
normal velocity for the parameters shown.
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ity at the contact ripple foM;=5 andRy;=~1.342 030 57... 10%
for which freeze-out would be expected according to Eq.
(92). Despite the fact that the asymptotic value is 108y;”
~0.012ukyy), it is however, not zero, and would lead to
permanent deformation of the interface.

Eq.(83)

108

C. Comparison with previously predicted cases of freeze-out

The freeze-out problem has been attacked several times in
the recent past as evidenced in the literature. Fraley was the
first to mention, to our knowledge, the possibility of having
zero growth for valuefy<1.5 in the shock reflected case
[3—11. Mikaelian [11] has studied for the first time this
problem with some detail in the weak shock limit, using the
model previously developed by Fralg¢}0]. Mikaelian reob-
tained the closed analytical expression given by Fraley for
the growth rate, and derived a freeze-out condition for weak
compressions anBy=1. The conclusions of Mikaelian have
been later reviewed by Brouillettgl9]. The approximate
growth rate, as obtained by Mikaelian, can be rewritten in F|G. 10. Exact asymptotic normal velocifgolid curve, Eq.

I

108

absolute value of the normal velocity

10'9 e b b b e b bl

11 12 13 14 15 16 1.7
incident shock Mach number

—_

our notation as ;J (82)] for the casey,=4.4, y,=1.1 in the weak shock limit. The
SoMk = Kk <A n i _) dashed curve has been calculated with the irrotational approxima-
Vi vikdo| Aro z+1vy)/’ (93 tion given by Eq.(83).
where Aro=(Ro~1)/(Ro+1) is the pre-shock Atwood num- ¢ \ariation as a function of the incident shock intensity. As
ber, andJ is a quantity defined by commented before, the steep gradiensgf as a function of
1 2( (1 +Ag)? M; which occurs near the freeze-out pointM;
J= 5 (W-1)?-Ry— 2w+ _<F +(1 _ATO)W2> ~1.62356..) could be indicating to us the possibility of a
w 0 rich topological structure for the freeze-out hypersurface. In
1-Ty particular, this hypersurface could be even double-valued or
w+1 /1 (94 exhibit disconnected regions or islands of freeze-out far

away from the zon&,~ 1. Right now, the development of a
andw=\Ryva/ 7. This last expression for the growth rate is simpler mathematical picture of that surface does not seem
valid in the limit: z < 1. It contains terms up to second order an easy task. An accurate mapping of this surface searching
in z and therefore, it does contain some of the informationfor those mathematical characteristics in the whole space of
carried by the bulk vorticity tern#B. Hence, its predictions initial parameters would certainly be interesting and is left
should be more accurate for low intensity shocks than theor future work.
predictions of Eq(92) are. It is easy to see, as discussed in  Soon after the prediction of Mikaelian, the numerical so-
Ref. [11], that for fluids with equal pre-shock densitié® |ution to the linear RM instability problem by Yang, Zhang,
=1), the above expression for the growth rate vanishes exand Sharp[3] tried to identify freeze-out for the casg,
actly if y,=4+y,. This finding confirms our conclusion, de- =4.4,y,=1.1. The authors solved the same equations as here
rived earlier, that the fluid in which the transmitted shockwith an improved numerical technique as used by Richtmyer,
travels should have a larger isentropic exponent than thand obtained the temporal evolution of the two important
other fluid. In Fig. 10, we compare Eq82), (83), and(93)  cases in the RM instability, whether a shock or a rarefaction
for the casey,=4.4, %,=1.1 for Ry=1 for incident shock are reflected. To compare with their findings, we have found
Mach numbers between<lM;=<1.7. We show the actual that, for the valuey,=4.4,v,=1.1, andM;=1.28, freeze out
growth rate calculated with the exact formula given by Eq.is expected aR;,=1.002 626 15&... . InFig. 11(a) we show
(82), which is indicated with the solid line. The growth pre- the interface tangential velocity of fluida* as a function of
dicted by the irrotational assumption is shown with thetime. The analogous quantity for fluid™ is shown in Fig.
dashed linglEq. (83)]. The growth predicted by Mikaelian 11(b). As can be seen, either the initial or final circulations at
with Eqg. (93) would be a perfectly horizontal lin€zero the interface are negative, in agreement with the qualitative
growth) starting at the pointM;=1 (not shown. As sus- picture discussed in the previous paragraphs. The asymptotic
pected, the two conditionBy=1 and y,=4y, do not give values are: 5v;°ax 0.003 524u;ki and 6v;°b
exact freeze-out of the normal velocity at any intensity =0.000 865 Qu;ki. It is noted a more or less general char-
<1, except atM;=1. However, the growth rate keeps very acteristic of freeze-out: it is always seen tkgtis lower than
low (év;” <10 *kup) until incident Mach numbers of the F, by at least an order of magnitude. This could be attributed
order ofM; ~ 1.2. With the aid of Eqg(85) and(86) it can be  to the relative “weakness” of the reflected shock compared to
seen that there is real freeze-outMi~1.62356.... The the transmitted front. In Fig. 1&) we show the contact sur-
velocity values in the vertical axis have been indicated withface perturbation velocity as a function of time. The horizon-
a logarithmic scale to accurately emphasize the large rangal axis is the dimensionless time defined by=kut. The
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FIG. 11. (a) Freeze-out case, studied in R€f3,10]. Tangential velocity on fluid&4.” (b) Same aga), for the tangential velocity on fluid
“b.” (c) Same aga), for the normal velocity at the contact surface.

agreement with Fig. 19 of Ref3] is indeed very good. energy that remains as rotational motion is beyond the scope
As a final comment about the perturbation field in freeze-of this work and is also left for future research.

out, we stress out again that despite the fact that the

asymptotic normal growth would be negligibly small near

the .inte_rface in freeze-out, t.here still cc_)uld be considerable V. CONCLUSIONS

motion in the bulk of the fluids, essentially due to the vor-

ticity that has been generated by the deformed fronts. Those _ )

vorticity fields are responsible for the jump in the tangential We have presented an analytic work to study the condi-

velocity at the interface, generating an asymptotic circulatiorfions under which freeze-out of the Richtmyer-Meshkov

8T..= dvj— vy, Therefore, there is some kinetic energy could be expected for the shock reflected case. Based on

trapped ’inside the vortical motion in the bulk which is neverprevious analytical works, the mathematical conditions for

zero. Its effect would be that of perturbing even further anyfreezing-out are derived. It is seen that those conditions are

subsequent shock launched toward the interface, despite tieguivalent to asking for a given critical relationship between

interface being asymptotically quiescent. Only in the case irthe initial tangential velocities at the contact surface ripple,

which the bulk parameterd-, andF.) are strictly zero, we as generated by the corrugated wave fronts. The role of the

would have no velocity perturbations. However, this situa-sonic reverberating pressure waves between the interface and

tion is not possible when there are two shocks separatinthe shocks is discussed, as is also emphasized the role of the

away from the interface. The task of computing the kineticvorticity field left by the shock fronts at each side of the
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